Files
2025-08-16 21:13:50 +08:00

218 lines
6.6 KiB
Python

import torch.utils.model_zoo as model_zoo
from torch import nn
from .build import BACKBONE_REGISTRY
from .backbone import Backbone
model_urls = {
"mobilenet_v2":
"https://download.pytorch.org/models/mobilenet_v2-b0353104.pth",
}
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor/2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(
self, in_planes, out_planes, kernel_size=3, stride=1, groups=1
):
padding = (kernel_size-1) // 2
super().__init__(
nn.Conv2d(
in_planes,
out_planes,
kernel_size,
stride,
padding,
groups=groups,
bias=False,
),
nn.BatchNorm2d(out_planes),
nn.ReLU6(inplace=True),
)
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super().__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend(
[
# dw
ConvBNReLU(
hidden_dim, hidden_dim, stride=stride, groups=hidden_dim
),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
]
)
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(Backbone):
def __init__(
self,
width_mult=1.0,
inverted_residual_setting=None,
round_nearest=8,
block=None,
):
"""
MobileNet V2.
Args:
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenet
"""
super().__init__()
if block is None:
block = InvertedResidual
input_channel = 32
last_channel = 1280
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if (
len(inverted_residual_setting) == 0
or len(inverted_residual_setting[0]) != 4
):
raise ValueError(
"inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".
format(inverted_residual_setting)
)
# building first layer
input_channel = _make_divisible(
input_channel * width_mult, round_nearest
)
self.last_channel = _make_divisible(
last_channel * max(1.0, width_mult), round_nearest
)
features = [ConvBNReLU(3, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(
block(
input_channel, output_channel, stride, expand_ratio=t
)
)
input_channel = output_channel
# building last several layers
features.append(
ConvBNReLU(input_channel, self.last_channel, kernel_size=1)
)
# make it nn.Sequential
self.features = nn.Sequential(*features)
self._out_features = self.last_channel
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
x = self.features(x)
x = x.mean([2, 3])
return x
def forward(self, x):
return self._forward_impl(x)
def init_pretrained_weights(model, model_url):
"""Initializes model with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
if model_url is None:
import warnings
warnings.warn(
"ImageNet pretrained weights are unavailable for this model"
)
return
pretrain_dict = model_zoo.load_url(model_url)
model_dict = model.state_dict()
pretrain_dict = {
k: v
for k, v in pretrain_dict.items()
if k in model_dict and model_dict[k].size() == v.size()
}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
@BACKBONE_REGISTRY.register()
def mobilenetv2(pretrained=True, **kwargs):
model = MobileNetV2(**kwargs)
if pretrained:
init_pretrained_weights(model, model_urls["mobilenet_v2"])
return model