Files
MSGCoOp/Dassl.ProGrad.pytorch/dassl/data/datasets/da/cifarstl.py
2025-08-16 21:13:50 +08:00

69 lines
2.3 KiB
Python

import os.path as osp
from dassl.utils import listdir_nohidden
from ..build import DATASET_REGISTRY
from ..base_dataset import Datum, DatasetBase
@DATASET_REGISTRY.register()
class CIFARSTL(DatasetBase):
"""CIFAR-10 and STL-10.
CIFAR-10:
- 60,000 32x32 colour images.
- 10 classes, with 6,000 images per class.
- 50,000 training images and 10,000 test images.
- URL: https://www.cs.toronto.edu/~kriz/cifar.html.
STL-10:
- 10 classes: airplane, bird, car, cat, deer, dog, horse,
monkey, ship, truck.
- Images are 96x96 pixels, color.
- 500 training images (10 pre-defined folds), 800 test images
per class.
- URL: https://cs.stanford.edu/~acoates/stl10/.
Reference:
- Krizhevsky. Learning Multiple Layers of Features
from Tiny Images. Tech report.
- Coates et al. An Analysis of Single Layer Networks in
Unsupervised Feature Learning. AISTATS 2011.
"""
dataset_dir = "cifar_stl"
domains = ["cifar", "stl"]
def __init__(self, cfg):
root = osp.abspath(osp.expanduser(cfg.DATASET.ROOT))
self.dataset_dir = osp.join(root, self.dataset_dir)
self.check_input_domains(
cfg.DATASET.SOURCE_DOMAINS, cfg.DATASET.TARGET_DOMAINS
)
train_x = self._read_data(cfg.DATASET.SOURCE_DOMAINS, split="train")
train_u = self._read_data(cfg.DATASET.TARGET_DOMAINS, split="train")
test = self._read_data(cfg.DATASET.TARGET_DOMAINS, split="test")
super().__init__(train_x=train_x, train_u=train_u, test=test)
def _read_data(self, input_domains, split="train"):
items = []
for domain, dname in enumerate(input_domains):
data_dir = osp.join(self.dataset_dir, dname, split)
class_names = listdir_nohidden(data_dir)
for class_name in class_names:
class_dir = osp.join(data_dir, class_name)
imnames = listdir_nohidden(class_dir)
label = int(class_name.split("_")[0])
for imname in imnames:
impath = osp.join(class_dir, imname)
item = Datum(impath=impath, label=label, domain=domain)
items.append(item)
return items