Merge remote-tracking branch 'origin/main'

This commit is contained in:
2023-10-10 16:02:59 +08:00
4 changed files with 22 additions and 9 deletions

2
.obsidian/app.json vendored
View File

@@ -1,7 +1,7 @@
{
"promptDelete": false,
"newLinkFormat": "relative",
"attachmentFolderPath": "./assets/引言",
"attachmentFolderPath": "./assets/基础概念",
"showUnsupportedFiles": false,
"newFileLocation": "current",
"useMarkdownLinks": true,

View File

@@ -13,7 +13,7 @@
"state": {
"type": "markdown",
"state": {
"file": "Books/动手学深度学习/引言.md",
"file": "Books/动手学深度学习/基础概念.md",
"mode": "source",
"source": false
}
@@ -77,7 +77,8 @@
}
],
"direction": "horizontal",
"width": 315.5
"width": 315.5,
"collapsed": true
},
"right": {
"id": "c501495747cfa761",
@@ -93,7 +94,7 @@
"state": {
"type": "backlink",
"state": {
"file": "Books/动手学深度学习/引言.md",
"file": "Books/动手学深度学习/基础概念.md",
"collapseAll": false,
"extraContext": false,
"sortOrder": "alphabetical",
@@ -110,7 +111,7 @@
"state": {
"type": "outgoing-link",
"state": {
"file": "Books/动手学深度学习/引言.md",
"file": "Books/动手学深度学习/基础概念.md",
"linksCollapsed": false,
"unlinkedCollapsed": true
}
@@ -133,7 +134,7 @@
"state": {
"type": "outline",
"state": {
"file": "Books/动手学深度学习/引言.md"
"file": "Books/动手学深度学习/基础概念.md"
}
}
},
@@ -166,9 +167,10 @@
},
"active": "82a60b2f86acd8d6",
"lastOpenFiles": [
"Books/动手学深度学习/引言.md",
"Books/动手学深度学习/基础概念.md",
"Books/Java Guide/基础语法.md",
"Books/Java并发编程/Java并发编程.md",
"Books/动手学深度学习/引言.md",
"Books/从零开始深入学习Spring/IoC.md",
"Books/Vim实用技巧/一、入门导读.md",
"Books/从零开始深入学习Spring",

View File

@@ -0,0 +1,12 @@
# 损失函数
用来量化预测值与实际值之间的差距。
一般我们会使用平方误差:
$l^i(\mathbf{w}, b) = \frac{1}{2}( \hat{y}^i - y^i)$
损失函数我们则采用平方误差的均值:
$L(\mathbf{w}, b) = \frac1n\sum_{i=1}^{n} l^i(\mathbf{x}, b)$
# 优化算法
- 随机梯度下降算法(Stochastic Gradient Descent)
通过不断在损失函数递减方向上更新参数来降低误差。
梯度下降法主要计算损失函数关于模型参数的导数。但是每次计算时候遍历整个数据集,效率会很低。所以每次计算先抽取一个小批量$B$(由固定数量的样本组成)的梯度,然后我们将梯度乘以一个预先确定的正数$\eta$,并从当前采纳数的值中减掉。
$(\mathbf{w}, b) <- (\mathbf{w},b) - \frac{\eta}{|B|} \sum_{i\in{B}}\partial_{(\mathbf{w}, b)}l^i(\mathbf{w},b)$
其中$\eta$代表学习率

View File

@@ -1,2 +1 @@
# 关键部分
## 数据