vault backup: 2024-04-01 18:46:15

This commit is contained in:
2024-04-01 18:46:15 +08:00
parent 1ee0070d32
commit e1996dd103
2 changed files with 3 additions and 1 deletions

View File

@@ -2,7 +2,7 @@
"accentColor": "",
"cssTheme": "Minimal",
"monospaceFontFamily": "Maple Mono SC NF",
"theme": "moonstone",
"theme": "system",
"interfaceFontFamily": "霞鹜文楷",
"textFontFamily": "霞鹜文楷等宽",
"translucency": false

View File

@@ -23,4 +23,6 @@ $L(\mathbf{w}, b) = \frac1n\sum_{i=1}^{n} l^i(\mathbf{x}, b)$
反向传播:$w_i ← w_i - \alpha(\frac{\partial L_0}{\partial w_i} + \lambda w_i)$
通过反向传播的过程我们可以看到,每次迭代后,权重的值都会变为$(1 - \lambda \alpha)$倍使得权重值更加靠近零但是不为0使模型偏向于学习更加简单的、泛化性能更高的模型。L1正则化则会导致模型将权重集中在一部分特征上将其它权重清零这称之为特征选择。
- Dropout
*经典泛化理论认为,为了缩小训练和测试性能之间的差距,应该以简单的模型为目标。简单性的另一个角度是平滑性,即函数不应该对其输入的微小变化敏感。*
Dropout在计算每一层时