Compare commits

...

3 Commits

Author SHA1 Message Date
eac6ddd746 vault backup: 2023-10-23 20:39:28 2023-10-23 20:39:29 +08:00
8af0c88db0 vault backup: 2023-10-17 16:14:14 2023-10-17 16:14:14 +08:00
114c85c1b0 vault backup: 2023-10-17 15:59:24 2023-10-17 15:59:25 +08:00
2 changed files with 9 additions and 2 deletions

View File

@@ -2,7 +2,7 @@
"accentColor": "", "accentColor": "",
"cssTheme": "Minimal", "cssTheme": "Minimal",
"monospaceFontFamily": "Maple Mono SC NF", "monospaceFontFamily": "Maple Mono SC NF",
"theme": "moonstone", "theme": "obsidian",
"interfaceFontFamily": "霞鹜文楷", "interfaceFontFamily": "霞鹜文楷",
"textFontFamily": "霞鹜文楷等宽", "textFontFamily": "霞鹜文楷等宽",
"translucency": false "translucency": false

View File

@@ -15,4 +15,11 @@ w &= w - \eta \cdot dw \\
b &= b - \eta \cdot db b &= b - \eta \cdot db
\end{align}$$ \end{align}$$
正向传递:计算网络输出。 正向传递:计算网络输出。
反向传递:更新模型参数。 反向传递:更新模型参数。
sigmoid函数消除线性。
> 线性激活函数: $a = z$
> 如果我们使用线性激活函数,无论我们经过多少层网络迭代,都相当于是对输入进行线性变换。
损失函数:计算模型预测结果的精度,反向传播的目的就是使得。
## Vectorization
向量化相较于显式循环更高效,能够更好的利用系统的并行化计算。