57 lines
1.3 KiB
Markdown
57 lines
1.3 KiB
Markdown
## 概念
|
|
标量函数:输出为标量的函数
|
|
$$
|
|
f(x) = x^2
|
|
$$
|
|
向量函数:输出为向量/矩阵/张量的函数
|
|
$$
|
|
f(x) =
|
|
\left[ \begin{matrix}
|
|
x & x^2 \\
|
|
x^3 & x^4
|
|
\end{matrix} \right]
|
|
$$
|
|
$$
|
|
f(A) = B
|
|
$$
|
|
## 本质
|
|
$\frac{dB}{dA} = \frac{d(f(A))}{dA}$ 即 `B` 对 `A` 中的每个变量进行求导。
|
|
## 计算方法
|
|
- 标量不变,向量拉伸。
|
|
- 前面横向拉伸,后面纵向拉伸。
|
|
## 布局
|
|
分为分母布局和分子布局(区别于谁是列向量),主要区别为求导后元素排列不同。
|
|
通常$(分母布局)^T = (分子布局)$。
|
|
## 常用法则
|
|
1. 乘法
|
|
$$
|
|
\frac{d(U^T V)}{dX} = \frac{\partial{U}}{\partial{X}} V + \frac{\partial{V}}{\partial{X}} U
|
|
$$
|
|
2. 加法
|
|
$$
|
|
\frac{d(U+V)}{dX} = \frac{dU}{dX} + \frac{dV}{dX}
|
|
$$
|
|
## 常见公式推导
|
|
1.
|
|
$$\begin{aligned}
|
|
f(X) &= A^T \cdot X = \sum_{i=1}^{n}a_i x_i \\
|
|
\frac{d(f(X))}{dX} &=
|
|
\left[ \begin{matrix}
|
|
\frac{\partial{f(X)}}{\partial{x_1}} \\
|
|
\frac{\partial{f(X)}}{\partial{x_2}} \\
|
|
\vdots\\
|
|
\frac{\partial{f(X)}}{\partial{x_n}}
|
|
\end{matrix} \right]
|
|
=
|
|
\left[ \begin{matrix}
|
|
a_1\\
|
|
a_2\\
|
|
\vdots\\
|
|
a_n
|
|
\end{matrix} \right]
|
|
= A
|
|
\end{aligned}$$
|
|
## 参考资料
|
|
https://www.bilibili.com/video/BV1xk4y1B7RQ
|
|
https://zhuanlan.zhihu.com/p/263777564
|
|
https://zhuanlan.zhihu.com/p/273729929 |