Files
PromptSRC/lpclip/feat_extractor.py
2023-07-13 23:43:31 +05:00

190 lines
5.9 KiB
Python

import os, argparse
import numpy as np
import torch
import sys
sys.path.append(os.path.abspath(".."))
from datasets.oxford_pets import OxfordPets
from datasets.oxford_flowers import OxfordFlowers
from datasets.fgvc_aircraft import FGVCAircraft
from datasets.dtd import DescribableTextures
from datasets.eurosat import EuroSAT
from datasets.stanford_cars import StanfordCars
from datasets.food101 import Food101
from datasets.sun397 import SUN397
from datasets.caltech101 import Caltech101
from datasets.ucf101 import UCF101
from datasets.imagenet import ImageNet
from datasets.imagenetv2 import ImageNetV2
from datasets.imagenet_sketch import ImageNetSketch
from datasets.imagenet_a import ImageNetA
from datasets.imagenet_r import ImageNetR
from dassl.utils import setup_logger, set_random_seed, collect_env_info
from dassl.config import get_cfg_default
from dassl.data.transforms import build_transform
from dassl.data import DatasetWrapper
import clip
# import pdb; pdb.set_trace()
def print_args(args, cfg):
print("***************")
print("** Arguments **")
print("***************")
optkeys = list(args.__dict__.keys())
optkeys.sort()
for key in optkeys:
print("{}: {}".format(key, args.__dict__[key]))
print("************")
print("** Config **")
print("************")
print(cfg)
def reset_cfg(cfg, args):
if args.root:
cfg.DATASET.ROOT = args.root
if args.output_dir:
cfg.OUTPUT_DIR = args.output_dir
if args.trainer:
cfg.TRAINER.NAME = args.trainer
if args.backbone:
cfg.MODEL.BACKBONE.NAME = args.backbone
if args.head:
cfg.MODEL.HEAD.NAME = args.head
def extend_cfg(cfg):
"""
Add new config variables.
E.g.
from yacs.config import CfgNode as CN
cfg.TRAINER.MY_MODEL = CN()
cfg.TRAINER.MY_MODEL.PARAM_A = 1.
cfg.TRAINER.MY_MODEL.PARAM_B = 0.5
cfg.TRAINER.MY_MODEL.PARAM_C = False
"""
from yacs.config import CfgNode as CN
cfg.TRAINER.OURS = CN()
cfg.TRAINER.OURS.N_CTX = 10 # number of context vectors
cfg.TRAINER.OURS.CSC = False # class-specific context
cfg.TRAINER.OURS.CTX_INIT = "" # initialize context vectors with given words
cfg.TRAINER.OURS.WEIGHT_U = 0.1 # weight for the unsupervised loss
def setup_cfg(args):
cfg = get_cfg_default()
extend_cfg(cfg)
# 1. From the dataset config file
if args.dataset_config_file:
cfg.merge_from_file(args.dataset_config_file)
# 2. From the method config file
if args.config_file:
cfg.merge_from_file(args.config_file)
# 3. From input arguments
reset_cfg(cfg, args)
cfg.freeze()
return cfg
def main(args):
cfg = setup_cfg(args)
if cfg.SEED >= 0:
print("Setting fixed seed: {}".format(cfg.SEED))
set_random_seed(cfg.SEED)
setup_logger(cfg.OUTPUT_DIR)
if torch.cuda.is_available() and cfg.USE_CUDA:
torch.backends.cudnn.benchmark = True
print_args(args, cfg)
print("Collecting env info ...")
print("** System info **\n{}\n".format(collect_env_info()))
######################################
# Setup DataLoader
######################################
dataset = eval(cfg.DATASET.NAME)(cfg)
if args.split == "train":
dataset_input = dataset.train_x
elif args.split == "val":
dataset_input = dataset.val
else:
dataset_input = dataset.test
tfm_train = build_transform(cfg, is_train=False)
data_loader = torch.utils.data.DataLoader(
DatasetWrapper(cfg, dataset_input, transform=tfm_train, is_train=False),
batch_size=cfg.DATALOADER.TRAIN_X.BATCH_SIZE,
sampler=None,
shuffle=False,
num_workers=cfg.DATALOADER.NUM_WORKERS,
drop_last=False,
pin_memory=(torch.cuda.is_available() and cfg.USE_CUDA),
)
########################################
# Setup Network
########################################
clip_model, _ = clip.load("RN50", "cuda", jit=False)
clip_model.eval()
###################################################################################################################
# Start Feature Extractor
feature_list = []
label_list = []
train_dataiter = iter(data_loader)
for train_step in range(1, len(train_dataiter) + 1):
batch = next(train_dataiter)
data = batch["img"].cuda()
feature = clip_model.visual(data)
feature = feature.cpu()
for idx in range(len(data)):
feature_list.append(feature[idx].tolist())
label_list.extend(batch["label"].tolist())
save_dir = os.path.join(cfg.OUTPUT_DIR, cfg.DATASET.NAME)
os.makedirs(save_dir, exist_ok=True)
save_filename = f"{args.split}"
np.savez(
os.path.join(save_dir, save_filename),
feature_list=feature_list,
label_list=label_list,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--root", type=str, default="", help="path to dataset")
parser.add_argument("--output-dir", type=str, default="", help="output directory")
parser.add_argument("--config-file", type=str, default="", help="path to config file")
parser.add_argument(
"--dataset-config-file",
type=str,
default="",
help="path to config file for dataset setup",
)
parser.add_argument("--num-shot", type=int, default=1, help="number of shots")
parser.add_argument("--split", type=str, choices=["train", "val", "test"], help="which split")
parser.add_argument("--trainer", type=str, default="", help="name of trainer")
parser.add_argument("--backbone", type=str, default="", help="name of CNN backbone")
parser.add_argument("--head", type=str, default="", help="name of head")
parser.add_argument("--seed", type=int, default=-1, help="only positive value enables a fixed seed")
parser.add_argument("--eval-only", action="store_true", help="evaluation only")
args = parser.parse_args()
main(args)