init
This commit is contained in:
220
clip/clip.py
Normal file
220
clip/clip.py
Normal file
@@ -0,0 +1,220 @@
|
||||
import hashlib
|
||||
import os
|
||||
import urllib
|
||||
import warnings
|
||||
from typing import Union, List
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
||||
from tqdm import tqdm
|
||||
|
||||
from .model import build_model
|
||||
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
||||
|
||||
try:
|
||||
from torchvision.transforms import InterpolationMode
|
||||
|
||||
BICUBIC = InterpolationMode.BICUBIC
|
||||
except ImportError:
|
||||
BICUBIC = Image.BICUBIC
|
||||
|
||||
if torch.__version__.split(".") < ["1", "7", "1"]:
|
||||
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
||||
|
||||
__all__ = ["available_models", "load", "tokenize"]
|
||||
_tokenizer = _Tokenizer()
|
||||
|
||||
_MODELS = {
|
||||
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
||||
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
||||
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
||||
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
||||
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
||||
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
||||
}
|
||||
|
||||
|
||||
def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
|
||||
os.makedirs(root, exist_ok=True)
|
||||
filename = os.path.basename(url)
|
||||
|
||||
expected_sha256 = url.split("/")[-2]
|
||||
download_target = os.path.join(root, filename)
|
||||
|
||||
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
||||
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
||||
|
||||
if os.path.isfile(download_target):
|
||||
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
||||
return download_target
|
||||
else:
|
||||
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
||||
|
||||
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
||||
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
||||
while True:
|
||||
buffer = source.read(8192)
|
||||
if not buffer:
|
||||
break
|
||||
|
||||
output.write(buffer)
|
||||
loop.update(len(buffer))
|
||||
|
||||
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
||||
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
||||
|
||||
return download_target
|
||||
|
||||
|
||||
def _transform(n_px):
|
||||
return Compose([
|
||||
Resize(n_px, interpolation=BICUBIC),
|
||||
CenterCrop(n_px),
|
||||
lambda image: image.convert("RGB"),
|
||||
ToTensor(),
|
||||
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
||||
])
|
||||
|
||||
|
||||
def available_models() -> List[str]:
|
||||
"""Returns the names of available CLIP models"""
|
||||
return list(_MODELS.keys())
|
||||
|
||||
|
||||
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=False):
|
||||
"""Load a CLIP model
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
||||
|
||||
device : Union[str, torch.device]
|
||||
The device to put the loaded model
|
||||
|
||||
jit : bool
|
||||
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
||||
|
||||
Returns
|
||||
-------
|
||||
model : torch.nn.Module
|
||||
The CLIP model
|
||||
|
||||
preprocess : Callable[[PIL.Image], torch.Tensor]
|
||||
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
||||
"""
|
||||
if name in _MODELS:
|
||||
model_path = _download(_MODELS[name])
|
||||
elif os.path.isfile(name):
|
||||
model_path = name
|
||||
else:
|
||||
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
||||
|
||||
try:
|
||||
# loading JIT archive
|
||||
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
||||
state_dict = None
|
||||
except RuntimeError:
|
||||
# loading saved state dict
|
||||
if jit:
|
||||
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
||||
jit = False
|
||||
state_dict = torch.load(model_path, map_location="cpu")
|
||||
|
||||
if not jit:
|
||||
model = build_model(state_dict or model.state_dict()).to(device)
|
||||
if str(device) == "cpu":
|
||||
model.float()
|
||||
return model, _transform(model.visual.input_resolution)
|
||||
|
||||
# patch the device names
|
||||
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
||||
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
||||
|
||||
def patch_device(module):
|
||||
try:
|
||||
graphs = [module.graph] if hasattr(module, "graph") else []
|
||||
except RuntimeError:
|
||||
graphs = []
|
||||
|
||||
if hasattr(module, "forward1"):
|
||||
graphs.append(module.forward1.graph)
|
||||
|
||||
for graph in graphs:
|
||||
for node in graph.findAllNodes("prim::Constant"):
|
||||
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
||||
node.copyAttributes(device_node)
|
||||
|
||||
model.apply(patch_device)
|
||||
patch_device(model.encode_image)
|
||||
patch_device(model.encode_text)
|
||||
|
||||
# patch dtype to float32 on CPU
|
||||
if str(device) == "cpu":
|
||||
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
||||
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
||||
float_node = float_input.node()
|
||||
|
||||
def patch_float(module):
|
||||
try:
|
||||
graphs = [module.graph] if hasattr(module, "graph") else []
|
||||
except RuntimeError:
|
||||
graphs = []
|
||||
|
||||
if hasattr(module, "forward1"):
|
||||
graphs.append(module.forward1.graph)
|
||||
|
||||
for graph in graphs:
|
||||
for node in graph.findAllNodes("aten::to"):
|
||||
inputs = list(node.inputs())
|
||||
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
||||
if inputs[i].node()["value"] == 5:
|
||||
inputs[i].node().copyAttributes(float_node)
|
||||
|
||||
model.apply(patch_float)
|
||||
patch_float(model.encode_image)
|
||||
patch_float(model.encode_text)
|
||||
|
||||
model.float()
|
||||
|
||||
return model, _transform(model.input_resolution.item())
|
||||
|
||||
|
||||
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor:
|
||||
"""
|
||||
Returns the tokenized representation of given input string(s)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts : Union[str, List[str]]
|
||||
An input string or a list of input strings to tokenize
|
||||
|
||||
context_length : int
|
||||
The context length to use; all CLIP models use 77 as the context length
|
||||
|
||||
truncate: bool
|
||||
Whether to truncate the text in case its encoding is longer than the context length
|
||||
|
||||
Returns
|
||||
-------
|
||||
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
||||
"""
|
||||
if isinstance(texts, str):
|
||||
texts = [texts]
|
||||
|
||||
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
||||
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
||||
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
||||
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
||||
|
||||
for i, tokens in enumerate(all_tokens):
|
||||
if len(tokens) > context_length:
|
||||
if truncate:
|
||||
tokens = tokens[:context_length]
|
||||
tokens[-1] = eot_token
|
||||
else:
|
||||
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
||||
result[i, :len(tokens)] = torch.tensor(tokens)
|
||||
|
||||
return result
|
||||
Reference in New Issue
Block a user