init
This commit is contained in:
77
daln/grl.py
Normal file
77
daln/grl.py
Normal file
@@ -0,0 +1,77 @@
|
||||
from typing import Optional, Any, Tuple
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
from torch.autograd import Function
|
||||
import torch
|
||||
|
||||
|
||||
class GradientReverseFunction(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx: Any, input: torch.Tensor, coeff: Optional[float] = 1.) -> torch.Tensor:
|
||||
ctx.coeff = coeff
|
||||
output = input * 1.0
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx: Any, grad_output: torch.Tensor) -> Tuple[torch.Tensor, Any]:
|
||||
return grad_output.neg() * ctx.coeff, None
|
||||
|
||||
|
||||
class GradientReverseLayer(nn.Module):
|
||||
def __init__(self):
|
||||
super(GradientReverseLayer, self).__init__()
|
||||
|
||||
def forward(self, *input):
|
||||
return GradientReverseFunction.apply(*input)
|
||||
|
||||
|
||||
class WarmStartGradientReverseLayer(nn.Module):
|
||||
"""Gradient Reverse Layer :math:`\mathcal{R}(x)` with warm start
|
||||
|
||||
The forward and backward behaviours are:
|
||||
|
||||
.. math::
|
||||
\mathcal{R}(x) = x,
|
||||
|
||||
\dfrac{ d\mathcal{R}} {dx} = - \lambda I.
|
||||
|
||||
:math:`\lambda` is initiated at :math:`lo` and is gradually changed to :math:`hi` using the following schedule:
|
||||
|
||||
.. math::
|
||||
\lambda = \dfrac{2(hi-lo)}{1+\exp(- α \dfrac{i}{N})} - (hi-lo) + lo
|
||||
|
||||
where :math:`i` is the iteration step.
|
||||
|
||||
Args:
|
||||
alpha (float, optional): :math:`α`. Default: 1.0
|
||||
lo (float, optional): Initial value of :math:`\lambda`. Default: 0.0
|
||||
hi (float, optional): Final value of :math:`\lambda`. Default: 1.0
|
||||
max_iters (int, optional): :math:`N`. Default: 1000
|
||||
auto_step (bool, optional): If True, increase :math:`i` each time `forward` is called.
|
||||
Otherwise use function `step` to increase :math:`i`. Default: False
|
||||
"""
|
||||
|
||||
def __init__(self, alpha: Optional[float] = 1.0, lo: Optional[float] = 0.0, hi: Optional[float] = 1.,
|
||||
max_iters: Optional[int] = 1000., auto_step: Optional[bool] = False):
|
||||
super(WarmStartGradientReverseLayer, self).__init__()
|
||||
self.alpha = alpha
|
||||
self.lo = lo
|
||||
self.hi = hi
|
||||
self.iter_num = 0
|
||||
self.max_iters = max_iters
|
||||
self.auto_step = auto_step
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
""""""
|
||||
coeff =float(
|
||||
2.0 * (self.hi - self.lo) / (1.0 + np.exp(-self.alpha * self.iter_num / self.max_iters))
|
||||
- (self.hi - self.lo) + self.lo
|
||||
)
|
||||
if self.auto_step:
|
||||
self.step()
|
||||
return GradientReverseFunction.apply(input, coeff)
|
||||
|
||||
def step(self):
|
||||
"""Increase iteration number :math:`i` by 1"""
|
||||
self.iter_num += 1
|
||||
25
daln/nwd.py
Normal file
25
daln/nwd.py
Normal file
@@ -0,0 +1,25 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from daln.grl import WarmStartGradientReverseLayer
|
||||
|
||||
|
||||
class NuclearWassersteinDiscrepancy(nn.Module):
|
||||
def __init__(self, classifier: nn.Module):
|
||||
super(NuclearWassersteinDiscrepancy, self).__init__()
|
||||
self.grl = WarmStartGradientReverseLayer(alpha=1., lo=0., hi=1., max_iters=1000, auto_step=True)
|
||||
self.classifier = classifier
|
||||
|
||||
@staticmethod
|
||||
def n_discrepancy(y_s: torch.Tensor, y_t: torch.Tensor) -> torch.Tensor:
|
||||
pre_s, pre_t = F.softmax(y_s, dim=1), F.softmax(y_t, dim=1)
|
||||
loss = (-torch.norm(pre_t, 'nuc') + torch.norm(pre_s, 'nuc')) / y_t.shape[0]
|
||||
return loss
|
||||
|
||||
def forward(self, f: torch.Tensor) -> torch.Tensor:
|
||||
f_grl = self.grl(f)
|
||||
y = self.classifier(f_grl)
|
||||
y_s, y_t = y.chunk(2, dim=0)
|
||||
|
||||
loss = self.n_discrepancy(y_s, y_t)
|
||||
return loss
|
||||
Reference in New Issue
Block a user