init
This commit is contained in:
67
datasets/oxford_flowers.py
Normal file
67
datasets/oxford_flowers.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import os
|
||||
import random
|
||||
from scipy.io import loadmat
|
||||
from collections import defaultdict
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
from .utils import Datum, DatasetBase, read_json
|
||||
|
||||
|
||||
template = ['a photo of a {}, a type of flower.']
|
||||
|
||||
|
||||
class OxfordFlowers(DatasetBase):
|
||||
|
||||
dataset_dir = 'oxford_flowers'
|
||||
|
||||
def __init__(self, root, num_shots):
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, 'jpg')
|
||||
self.label_file = os.path.join(self.dataset_dir, 'imagelabels.mat')
|
||||
self.lab2cname_file = os.path.join(self.dataset_dir, 'cat_to_name.json')
|
||||
self.split_path = os.path.join(self.dataset_dir, 'split_zhou_OxfordFlowers.json')
|
||||
|
||||
self.template = template
|
||||
|
||||
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir)
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=test)
|
||||
|
||||
def read_data(self):
|
||||
tracker = defaultdict(list)
|
||||
label_file = loadmat(self.label_file)['labels'][0]
|
||||
for i, label in enumerate(label_file):
|
||||
imname = f'image_{str(i + 1).zfill(5)}.jpg'
|
||||
impath = os.path.join(self.image_dir, imname)
|
||||
label = int(label)
|
||||
tracker[label].append(impath)
|
||||
|
||||
print('Splitting data into 50% train, 20% val, and 30% test')
|
||||
|
||||
def _collate(ims, y, c):
|
||||
items = []
|
||||
for im in ims:
|
||||
item = Datum(
|
||||
impath=im,
|
||||
label=y-1, # convert to 0-based label
|
||||
classname=c
|
||||
)
|
||||
items.append(item)
|
||||
return items
|
||||
|
||||
lab2cname = read_json(self.lab2cname_file)
|
||||
train, val, test = [], [], []
|
||||
for label, impaths in tracker.items():
|
||||
random.shuffle(impaths)
|
||||
n_total = len(impaths)
|
||||
n_train = round(n_total * 0.5)
|
||||
n_val = round(n_total * 0.2)
|
||||
n_test = n_total - n_train - n_val
|
||||
assert n_train > 0 and n_val > 0 and n_test > 0
|
||||
cname = lab2cname[str(label)]
|
||||
train.extend(_collate(impaths[:n_train], label, cname))
|
||||
val.extend(_collate(impaths[n_train:n_train+n_val], label, cname))
|
||||
test.extend(_collate(impaths[n_train+n_val:], label, cname))
|
||||
|
||||
return train, val, test
|
||||
Reference in New Issue
Block a user