init
This commit is contained in:
283
main_DALN.py
Normal file
283
main_DALN.py
Normal file
@@ -0,0 +1,283 @@
|
||||
import time
|
||||
from clip import clip
|
||||
import torch.nn as nn
|
||||
import torch.optim
|
||||
from opts import opts # The options for the project
|
||||
# from trainer import validate # For the validate (test) process
|
||||
from models.DomainClassifierTarget import DClassifierForTarget
|
||||
from models.DomainClassifierSource import DClassifierForSource
|
||||
from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss
|
||||
from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \
|
||||
set_adapter_weights,set_adapter_weights_single, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights
|
||||
from Adapter import Weight_Adapter,Classifier,Res_Adapter
|
||||
import logging
|
||||
import torch.nn.functional as F
|
||||
from daln.nwd import NuclearWassersteinDiscrepancy
|
||||
|
||||
|
||||
|
||||
def train(classnames, templates, source_train_loader, source_train_loader_batch, model,
|
||||
adapter, optimizer,
|
||||
epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,discrepancy,res_adapter):
|
||||
batch_time = AverageMeter()
|
||||
data_time = AverageMeter()
|
||||
losses_classifier = AverageMeter()
|
||||
losses_G = AverageMeter()
|
||||
losses_T = AverageMeter()
|
||||
top1_source = AverageMeter()
|
||||
top1_target = AverageMeter()
|
||||
|
||||
CLIP_Text.eval()
|
||||
CLIP_Image.eval()
|
||||
Text_Encoder.eval()
|
||||
Image_Encoder.eval()
|
||||
model.eval()
|
||||
logit_scale = model.logit_scale.exp()
|
||||
|
||||
res_adapter.train()
|
||||
adapter.train()
|
||||
new_epoch_flag = False
|
||||
end = time.time()
|
||||
concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda()
|
||||
try:
|
||||
(image, label, _) = source_train_loader_batch.__next__()[1]
|
||||
except StopIteration:
|
||||
epoch = epoch + 1
|
||||
new_epoch_flag = True
|
||||
source_train_loader_batch = enumerate(source_train_loader)
|
||||
(image, label, _) = source_train_loader_batch.__next__()[1]
|
||||
target_target = label.cuda()
|
||||
|
||||
# 自监督标签
|
||||
label_self_supervised = label.cuda()
|
||||
indices = torch.randperm(len(label))
|
||||
target_source = label[indices].cuda()
|
||||
|
||||
# target_source = label.cuda()
|
||||
input_target = image.cuda()
|
||||
input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder)
|
||||
input_source =res_adapter(input_source)
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
target_target_temp = target_target + len(classnames)
|
||||
target_source_temp = target_source + len(classnames)
|
||||
target_target_temp = target_target_temp.cuda()
|
||||
|
||||
# clip图片编码器
|
||||
with torch.no_grad():
|
||||
input_target_temp = CLIP_Image(input_target)
|
||||
|
||||
input_target_add = Image_Encoder(input_target_temp)
|
||||
input_target_add =res_adapter(input_target_add )
|
||||
|
||||
# compute output
|
||||
x = torch.cat((input_source, input_target_add), dim=0)
|
||||
y = adapter(x)* logit_scale
|
||||
|
||||
|
||||
y_s, y_t = y.chunk(2, dim=0)
|
||||
labels_s=target_source
|
||||
labels_t=label_self_supervised
|
||||
cls_loss_1 = criterion(y_s, labels_s)
|
||||
cls_loss_2 = criterion(y_t, labels_t)
|
||||
|
||||
|
||||
discrepancy_loss = -discrepancy(x)
|
||||
trade_off_lambda=-100
|
||||
transfer_loss = discrepancy_loss * trade_off_lambda # multiply the lambda to trade off the loss term
|
||||
loss = cls_loss_1+cls_loss_2 + transfer_loss
|
||||
|
||||
|
||||
prec1_source, _ = accuracy(y_s.data, target_source, topk=(1, 5))
|
||||
prec1_target, _ = accuracy(y_t.data, target_target, topk=(1, 5))
|
||||
|
||||
|
||||
losses_G.update((cls_loss_1+cls_loss_2).item(), input_source.size(0))
|
||||
losses_T.update(transfer_loss.item(), input_source.size(0))
|
||||
top1_source.update(prec1_source[0], input_source.size(0))
|
||||
top1_target.update(prec1_target[0], input_source.size(0))
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
|
||||
batch_time.update(time.time() - end)
|
||||
if (epoch + 1) % args.print_freq == 0 or epoch == 0:
|
||||
print('Train: [{0}/{1}]\t'
|
||||
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
|
||||
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
|
||||
'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t'
|
||||
'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t'
|
||||
'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t'
|
||||
'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t'
|
||||
'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format(
|
||||
epoch, args.epochs, batch_time=batch_time,
|
||||
data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source,
|
||||
top1T=top1_target))
|
||||
return source_train_loader_batch, epoch, new_epoch_flag
|
||||
|
||||
|
||||
def validate(best_epoch,classnames, templates, val_loader, model, adapter, epoch, args, criterion, best_prec, CLIP_Text,
|
||||
Text_Encoder, CLIP_Image,
|
||||
Image_Encoder,res_adapter):
|
||||
batch_time = AverageMeter()
|
||||
losses_source = AverageMeter()
|
||||
losses_target = AverageMeter()
|
||||
top1_source = AverageMeter()
|
||||
top1_target = AverageMeter()
|
||||
|
||||
CLIP_Text.eval()
|
||||
CLIP_Image.eval()
|
||||
Text_Encoder.eval()
|
||||
Image_Encoder.eval()
|
||||
res_adapter.eval()
|
||||
model.eval()
|
||||
adapter.eval()
|
||||
end = time.time()
|
||||
logit_scale = model.logit_scale.exp()
|
||||
|
||||
for i, (image, label, _) in enumerate(val_loader):
|
||||
image = image.cuda()
|
||||
label = label.cuda()
|
||||
|
||||
input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder)
|
||||
input_target = image.cuda()
|
||||
target_target = label.cuda()
|
||||
target_source = label.cuda()
|
||||
|
||||
# clip图片编码器
|
||||
with torch.no_grad():
|
||||
input_target_temp = CLIP_Image(input_target)
|
||||
input_target_add = Image_Encoder(input_target_temp)
|
||||
input_target_add =res_adapter(input_target_add)
|
||||
|
||||
|
||||
# output_source = adapter(input_source) * logit_scale
|
||||
output_target = adapter(input_target_add) * logit_scale
|
||||
output_source = output_target
|
||||
|
||||
# 3
|
||||
loss_source = criterion(output_source, target_target)
|
||||
loss_target = criterion(output_target, target_target)
|
||||
|
||||
# measure accuracy and record loss
|
||||
prec1_source, _ = accuracy(output_source.data, target_target, topk=(1, 5))
|
||||
prec1_target, _ = accuracy(output_target.data, target_target, topk=(1, 5))
|
||||
|
||||
losses_source.update(loss_source.item(), image.size(0))
|
||||
losses_target.update(loss_target.item(), image.size(0))
|
||||
|
||||
top1_source.update(prec1_source[0], image.size(0))
|
||||
top1_target.update(prec1_target[0], image.size(0))
|
||||
# measure elapsed time
|
||||
batch_time.update(time.time() - end)
|
||||
end = time.time()
|
||||
|
||||
if i % args.print_freq == 0:
|
||||
print('Test: [{0}][{1}/{2}]\t'
|
||||
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
|
||||
'LS {lossS.val:.4f} ({lossS.avg:.4f})\t'
|
||||
'LT {lossT.val:.4f} ({lossT.avg:.4f})\t'
|
||||
'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t'
|
||||
'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format(
|
||||
epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target,
|
||||
top1S=top1_source, top1T=top1_target))
|
||||
print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}'
|
||||
.format(top1S=top1_source, top1T=top1_target))
|
||||
prec = max(top1_target.avg, top1_source.avg).item()
|
||||
if prec > best_prec:
|
||||
best_prec = max(top1_target.avg, top1_source.avg).item()
|
||||
best_epoch = epoch
|
||||
print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec)
|
||||
|
||||
return prec,best_epoch
|
||||
|
||||
|
||||
def main():
|
||||
args = opts()
|
||||
|
||||
set_seed(2023)
|
||||
model, preprocess = clip.load(args.name)
|
||||
model = model.cuda()
|
||||
model.float( )
|
||||
classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess)
|
||||
CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 0)
|
||||
|
||||
prepare_directories(args, CLIP_Text, CLIP_Image)
|
||||
|
||||
# 分类层
|
||||
weights = set_adapter_weights_single(model, classnames, templates)
|
||||
# res_adapter = Weight_Adapter(args, classnames, weights).cuda()
|
||||
res_adapter = Res_Adapter(1024).cuda()
|
||||
adapter = Classifier(args, classnames, weights).cuda()
|
||||
# instantiate NWD
|
||||
discrepancy = NuclearWassersteinDiscrepancy(adapter)
|
||||
|
||||
# 损失函数
|
||||
criterion = nn.CrossEntropyLoss().cuda()
|
||||
criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda()
|
||||
criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda()
|
||||
|
||||
# 为模型的每个部分定义学习率和权重衰减
|
||||
# lr_adapter = 0.0001
|
||||
# lr_image_encoder = 0.00001
|
||||
# lr_text_encoder = 0.00001
|
||||
# weight_decay = 0.00001
|
||||
lr_adapter = 0.0001
|
||||
lr_image_encoder = 0.0001
|
||||
lr_text_encoder = 0.00001
|
||||
weight_decay = 0.00001
|
||||
# ADAM_BETAS 是用于控制移动平均衰减率的元组
|
||||
ADAM_BETAS = (0.9, 0.999)
|
||||
|
||||
# 创建 AdamW 优化器实例
|
||||
# optimizer = torch.optim.AdamW([
|
||||
# {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS},
|
||||
# {'params': res_adapter.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay,
|
||||
# 'betas': ADAM_BETAS},
|
||||
# {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}
|
||||
# ], eps=1e-5)
|
||||
optimizer = torch.optim.AdamW([
|
||||
{'params': adapter.parameters(), 'lr': lr_adapter},
|
||||
{'params': res_adapter.parameters(), 'lr': lr_image_encoder},
|
||||
{'params': Text_Encoder.parameters(), 'lr': lr_text_encoder}
|
||||
], eps=1e-5)
|
||||
|
||||
# 设置CosineAnnealingLR学习率调度器
|
||||
# T_max设置为epochs的数量,表示在每个epoch后更新学习率
|
||||
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader))
|
||||
source_train_loader_batch = enumerate(train_loader)
|
||||
|
||||
current_epoch = 0
|
||||
best_prec = 0
|
||||
best_epoch=0
|
||||
while (current_epoch < args.epochs):
|
||||
source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates,
|
||||
train_loader,
|
||||
source_train_loader_batch,
|
||||
model,
|
||||
adapter,
|
||||
optimizer,
|
||||
current_epoch,
|
||||
args, scheduler, criterion, CLIP_Text,
|
||||
Text_Encoder, CLIP_Image, Image_Encoder,discrepancy,res_adapter)
|
||||
if new_epoch_flag:
|
||||
if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0:
|
||||
if current_epoch >= args.valepoch:
|
||||
prec,best_epoch = validate(best_epoch,classnames, templates, loader, model, adapter, current_epoch, args, criterion,
|
||||
best_prec,
|
||||
CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,res_adapter)
|
||||
is_best = prec > best_prec
|
||||
if prec > args.valacc:
|
||||
if is_best:
|
||||
save_model(current_epoch, Text_Encoder, Image_Encoder, adapter,args, prec)
|
||||
best_prec = max(prec, best_prec)
|
||||
# 更新日志
|
||||
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||||
logging.info(
|
||||
f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user