init
This commit is contained in:
41
models/CB_Loss.py
Normal file
41
models/CB_Loss.py
Normal file
@@ -0,0 +1,41 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
class CBLoss(torch.nn.Module):
|
||||
def __init__(self, samples_per_cls, no_of_classes, loss_type, beta=0.9999, gamma=2.0):
|
||||
super(CBLoss, self).__init__()
|
||||
self.samples_per_cls = samples_per_cls#samples_per_cls: 一个列表,表示每个类别的样本数量
|
||||
self.no_of_classes = no_of_classes #no_of_classes: 类别数量
|
||||
self.loss_type = loss_type #loss_type: 表示损失函数的类型,可以是 softmax、sigmoid 或 focal
|
||||
self.beta = beta #beta: 参考论文中定义的 beta 参数,默认值是 0.9999
|
||||
self.gamma = gamma #gamma: 如果损失函数类型是 focal,表示 gamma 参数,默认值是 2.0
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
def forward(self, logits, labels):
|
||||
#effective_num = 1.0 - np.power(self.beta, self.samples_per_cls)
|
||||
#weights = (1.0 - self.beta) / effective_num
|
||||
#weights = weights / torch.sum(weights) * self.no_of_classes
|
||||
weights = np.array([1]) * self.no_of_classes
|
||||
labels_one_hot = F.one_hot(labels, self.no_of_classes).float()
|
||||
weights = torch.tensor(weights).float()
|
||||
|
||||
weights = weights.unsqueeze(0).to(self.device)
|
||||
labels_one_hot = labels_one_hot.to(self.device)
|
||||
|
||||
weights = weights.repeat(labels_one_hot.shape[0], 1) * labels_one_hot
|
||||
weights = weights.sum(1).unsqueeze(1)
|
||||
weights = weights.repeat(1, self.no_of_classes)
|
||||
|
||||
if self.loss_type == "focal":
|
||||
ce_loss = F.binary_cross_entropy_with_logits(input=logits, target=labels_one_hot, reduction="none")
|
||||
pt = torch.exp(-ce_loss)
|
||||
focal_loss = ((1 - pt) ** self.gamma * ce_loss).mean()
|
||||
loss = focal_loss
|
||||
elif self.loss_type == "sigmoid":
|
||||
loss = F.binary_cross_entropy_with_logits(input=logits, target=labels_one_hot, weight=weights)
|
||||
elif self.loss_type == "softmax":
|
||||
# loss = F.cross_entropy(input=logits, target=labels, weight=weights)
|
||||
pred = logits.softmax(dim=1)
|
||||
cb_loss = F.binary_cross_entropy(input=pred, target=labels_one_hot, weight=weights)
|
||||
|
||||
return cb_loss
|
||||
48
models/DomainClassifierSource.py
Normal file
48
models/DomainClassifierSource.py
Normal file
@@ -0,0 +1,48 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.autograd import Variable
|
||||
|
||||
|
||||
def _assert_no_grad(variable):
|
||||
assert not variable.requires_grad, \
|
||||
"nn criterions don't compute the gradient w.r.t. targets - please " \
|
||||
"mark these variables as volatile or not requiring gradients"
|
||||
|
||||
|
||||
class _Loss(nn.Module):
|
||||
def __init__(self, size_average=True):
|
||||
super(_Loss, self).__init__()
|
||||
self.size_average = size_average
|
||||
|
||||
|
||||
class _WeightedLoss(_Loss):
|
||||
def __init__(self, weight=None, size_average=True):
|
||||
super(_WeightedLoss, self).__init__(size_average)
|
||||
self.register_buffer('weight', weight)
|
||||
|
||||
|
||||
class DClassifierForSource(_WeightedLoss):
|
||||
|
||||
def __init__(self, weight=None, size_average=True, ignore_index=-100, reduce=True, nClass=10):
|
||||
super(DClassifierForSource, self).__init__(weight, size_average)
|
||||
self.nClass = nClass
|
||||
|
||||
def forward(self, input):
|
||||
# _assert_no_grad(target)
|
||||
batch_size = input.size(0)
|
||||
prob = F.softmax(input, dim=1)
|
||||
# prob = F.sigmoid(input)
|
||||
c = prob.data[:, :self.nClass].sum(1)
|
||||
d = (prob.data[:, :self.nClass].sum(1) == 0).sum()
|
||||
if (prob.data[:, :self.nClass].sum(1) == 0).sum() != 0: ########### in case of log(0)
|
||||
soft_weight = torch.FloatTensor(batch_size).fill_(0)
|
||||
soft_weight[prob[:, :self.nClass].sum(1).data.cpu() == 0] = 1e-6
|
||||
soft_weight_var = Variable(soft_weight).cuda()
|
||||
loss = -((prob[:, :self.nClass].sum(1) + soft_weight_var).log().mean())
|
||||
else:
|
||||
a = prob[:, :self.nClass].sum(1) # 求数组每一行的和
|
||||
b = a.log()
|
||||
c = b.mean()
|
||||
loss = -(prob[:, :self.nClass].sum(1).log().mean())
|
||||
return loss
|
||||
44
models/DomainClassifierTarget.py
Normal file
44
models/DomainClassifierTarget.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.autograd import Variable
|
||||
|
||||
|
||||
def _assert_no_grad(variable):
|
||||
assert not variable.requires_grad, \
|
||||
"nn criterions don't compute the gradient w.r.t. targets - please " \
|
||||
"mark these variables as volatile or not requiring gradients"
|
||||
|
||||
|
||||
class _Loss(nn.Module):
|
||||
def __init__(self, size_average=True):
|
||||
super(_Loss, self).__init__()
|
||||
self.size_average = size_average
|
||||
|
||||
|
||||
class _WeightedLoss(_Loss):
|
||||
def __init__(self, weight=None, size_average=True):
|
||||
super(_WeightedLoss, self).__init__(size_average)
|
||||
self.register_buffer('weight', weight)
|
||||
|
||||
|
||||
class DClassifierForTarget(_WeightedLoss):
|
||||
|
||||
def __init__(self, weight=None, size_average=True, ignore_index=-100, reduce=True, nClass=10):
|
||||
super(DClassifierForTarget, self).__init__(weight, size_average)
|
||||
self.nClass = nClass
|
||||
|
||||
def forward(self, input):
|
||||
# _assert_no_grad(target)
|
||||
batch_size = input.size(0)
|
||||
|
||||
prob = F.softmax(input, dim=1)
|
||||
# prob = F.sigmoid(input)
|
||||
if (prob.data[:, self.nClass:].sum(1) == 0).sum() != 0: ########### in case of log(0)
|
||||
soft_weight = torch.FloatTensor(batch_size).fill_(0)
|
||||
soft_weight[prob[:, self.nClass:].sum(1).data.cpu() == 0] = 1e-6
|
||||
soft_weight_var = Variable(soft_weight).cuda()
|
||||
loss = -((prob[:, self.nClass:].sum(1) + soft_weight_var).log().mean())
|
||||
else:
|
||||
loss = -(prob[:, self.nClass:].sum(1).log().mean())
|
||||
return loss
|
||||
46
models/EntropyMinimizationPrinciple.py
Normal file
46
models/EntropyMinimizationPrinciple.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.autograd import Variable
|
||||
|
||||
|
||||
def _assert_no_grad(variable):
|
||||
assert not variable.requires_grad, \
|
||||
"nn criterions don't compute the gradient w.r.t. targets - please " \
|
||||
"mark these variables as volatile or not requiring gradients"
|
||||
|
||||
|
||||
class _Loss(nn.Module):
|
||||
def __init__(self, size_average=True):
|
||||
super(_Loss, self).__init__()
|
||||
self.size_average = size_average
|
||||
|
||||
|
||||
class _WeightedLoss(_Loss):
|
||||
def __init__(self, weight=None, size_average=True):
|
||||
super(_WeightedLoss, self).__init__(size_average)
|
||||
self.register_buffer('weight', weight)
|
||||
|
||||
|
||||
class EMLossForTarget(_WeightedLoss):
|
||||
|
||||
def __init__(self, weight=None, size_average=True, ignore_index=-100, reduce=True, nClass=10):
|
||||
super(EMLossForTarget, self).__init__(weight, size_average)
|
||||
self.nClass = nClass
|
||||
|
||||
def forward(self, input):
|
||||
batch_size = input.size(0)
|
||||
prob = F.softmax(input, dim=1)
|
||||
# prob = F.sigmoid(input)
|
||||
prob_source = prob[:, :self.nClass]
|
||||
prob_target = prob[:, self.nClass:]
|
||||
prob_sum = prob_target + prob_source
|
||||
if (prob_sum.data.cpu() == 0).sum() != 0:
|
||||
weight_sum = torch.FloatTensor(batch_size, self.nClass).fill_(0)
|
||||
weight_sum[prob_sum.data.cpu() == 0] = 1e-6
|
||||
weight_sum = Variable(weight_sum).cuda()
|
||||
loss_sum = -(prob_sum + weight_sum).log().mul(prob_sum).sum(1).mean()
|
||||
else:
|
||||
loss_sum = -prob_sum.log().mul(prob_sum).sum(1).mean()
|
||||
|
||||
return loss_sum
|
||||
12
models/SmoothCrossEntropy.py
Normal file
12
models/SmoothCrossEntropy.py
Normal file
@@ -0,0 +1,12 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
class SmoothCrossEntropy(nn.Module):
|
||||
def __init__(self, epsilon: float = 0.):
|
||||
super(SmoothCrossEntropy, self).__init__()
|
||||
self.epsilon = float(epsilon)
|
||||
|
||||
def forward(self, logits: torch.Tensor, labels: torch.LongTensor) -> torch.Tensor:
|
||||
target_probs = torch.full_like(logits, self.epsilon / (logits.shape[1] - 1))
|
||||
target_probs.scatter_(1, labels.unsqueeze(1), 1 - self.epsilon)
|
||||
return F.kl_div(torch.log_softmax(logits, 1), target_probs, reduction='none').sum(1)
|
||||
0
models/__init__.py
Normal file
0
models/__init__.py
Normal file
261
models/resnet.py
Normal file
261
models/resnet.py
Normal file
@@ -0,0 +1,261 @@
|
||||
import torch.nn as nn
|
||||
import math
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
import torch
|
||||
import ipdb
|
||||
|
||||
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
|
||||
'resnet152']
|
||||
|
||||
model_urls = {
|
||||
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
||||
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
||||
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
||||
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
||||
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
||||
}
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1):
|
||||
"3x3 convolution with padding"
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = conv3x3(planes, planes)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
||||
super(Bottleneck, self).__init__()
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * 4)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Module):
|
||||
|
||||
def __init__(self, block, layers, num_classes=1000):
|
||||
self.inplanes = 64
|
||||
super(ResNet, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
||||
bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, 64, layers[0])
|
||||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
||||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
||||
self.avgpool = nn.AvgPool2d(7)
|
||||
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.data.normal_(0, math.sqrt(2. / n))
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(self.inplanes, planes * block.expansion,
|
||||
kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, downsample))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
|
||||
x = self.avgpool(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.fc(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def resnet18(args, **kwargs):
|
||||
"""Constructs a ResNet-18 model.
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
|
||||
if args.pretrained:
|
||||
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
|
||||
# modify the structure of the model.
|
||||
num_of_feature_map = model.fc.in_features
|
||||
model.fc = nn.Linear(num_of_feature_map, args.num_classes)
|
||||
model.fc.weight.data.normal_(0.0, 0.02)
|
||||
model.fc.bias.data.normal_(0)
|
||||
return model
|
||||
|
||||
|
||||
def resnet34(args, **kwargs):
|
||||
"""Constructs a ResNet-34 model.
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
||||
if args.pretrained:
|
||||
print('Load ImageNet pre-trained resnet model')
|
||||
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
|
||||
# modify the structure of the model.
|
||||
num_of_feature_map = model.fc.in_features
|
||||
model.fc = nn.Linear(num_of_feature_map, args.num_classes)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def resnet50(args, **kwargs):
|
||||
"""Constructs a ResNet-50 model.
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
|
||||
if args.pretrained:
|
||||
if args.pretrained_checkpoint: ################### use self-pretrained model
|
||||
# modify the structure of the model.
|
||||
num_of_feature_map = model.fc.in_features
|
||||
model.fc = nn.Linear(num_of_feature_map, args.num_classes * 2)
|
||||
init_dict = model.state_dict()
|
||||
pretrained_dict_temp = torch.load(args.pretrained_checkpoint)['state_dict']
|
||||
pretrained_dict = {k.replace('module.', ''): v for k, v in pretrained_dict_temp.items()}
|
||||
temp = init_dict['fc.weight'].clone()
|
||||
temp[:args.num_classes, :] = pretrained_dict['fc.weight'].clone()
|
||||
pretrained_dict['fc.weight'] = temp.clone()
|
||||
temp = init_dict['fc.bias'].clone()
|
||||
temp[:args.num_classes] = pretrained_dict['fc.bias'].clone()
|
||||
pretrained_dict['fc.bias'] = temp.clone()
|
||||
model.load_state_dict(pretrained_dict)
|
||||
else:
|
||||
model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) ########## use imagenet pretrained model
|
||||
# modify the structure of the model.
|
||||
num_of_feature_map = model.fc.in_features
|
||||
model.fc = nn.Linear(num_of_feature_map, args.num_classes * 2)
|
||||
return model
|
||||
|
||||
|
||||
def resnet101(args, **kwargs):
|
||||
"""Constructs a ResNet-101 model.
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
|
||||
if args.pretrained:
|
||||
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
|
||||
# modify the structure of the model.
|
||||
num_of_feature_map = model.fc.in_features
|
||||
model.fc = nn.Linear(num_of_feature_map, args.num_classes)
|
||||
model.fc.weight.data.normal_(0.0, 0.02)
|
||||
model.fc.bias.data.normal_(0)
|
||||
return model
|
||||
|
||||
|
||||
def resnet152(args, **kwargs):
|
||||
"""Constructs a ResNet-152 model.
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
|
||||
if args.pretrained:
|
||||
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
|
||||
# modify the structure of the model.
|
||||
num_of_feature_map = model.fc.in_features
|
||||
model.fc = nn.Linear(num_of_feature_map, args.num_classes)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def resnet(args, **kwargs): ################ Only support ResNet-50 in this simple code.
|
||||
print("==> creating model '{}' ".format(args.arch))
|
||||
if args.arch == 'resnet18':
|
||||
return resnet18(args)
|
||||
elif args.arch == 'resnet34':
|
||||
return resnet34(args)
|
||||
elif args.arch == 'resnet50':
|
||||
return resnet50(args)
|
||||
elif args.arch == 'resnet101':
|
||||
return resnet101(args)
|
||||
elif args.arch == 'resnet152':
|
||||
return resnet152(args)
|
||||
else:
|
||||
raise ValueError('Unrecognized model architecture', args.arch)
|
||||
Reference in New Issue
Block a user