This commit is contained in:
2024-05-21 19:41:56 +08:00
commit ca67205608
217 changed files with 201004 additions and 0 deletions

41
models/CB_Loss.py Normal file
View File

@@ -0,0 +1,41 @@
import torch
import torch.nn.functional as F
import numpy as np
class CBLoss(torch.nn.Module):
def __init__(self, samples_per_cls, no_of_classes, loss_type, beta=0.9999, gamma=2.0):
super(CBLoss, self).__init__()
self.samples_per_cls = samples_per_cls#samples_per_cls: 一个列表,表示每个类别的样本数量
self.no_of_classes = no_of_classes #no_of_classes: 类别数量
self.loss_type = loss_type #loss_type: 表示损失函数的类型,可以是 softmax、sigmoid 或 focal
self.beta = beta #beta: 参考论文中定义的 beta 参数,默认值是 0.9999
self.gamma = gamma #gamma: 如果损失函数类型是 focal表示 gamma 参数,默认值是 2.0
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def forward(self, logits, labels):
#effective_num = 1.0 - np.power(self.beta, self.samples_per_cls)
#weights = (1.0 - self.beta) / effective_num
#weights = weights / torch.sum(weights) * self.no_of_classes
weights = np.array([1]) * self.no_of_classes
labels_one_hot = F.one_hot(labels, self.no_of_classes).float()
weights = torch.tensor(weights).float()
weights = weights.unsqueeze(0).to(self.device)
labels_one_hot = labels_one_hot.to(self.device)
weights = weights.repeat(labels_one_hot.shape[0], 1) * labels_one_hot
weights = weights.sum(1).unsqueeze(1)
weights = weights.repeat(1, self.no_of_classes)
if self.loss_type == "focal":
ce_loss = F.binary_cross_entropy_with_logits(input=logits, target=labels_one_hot, reduction="none")
pt = torch.exp(-ce_loss)
focal_loss = ((1 - pt) ** self.gamma * ce_loss).mean()
loss = focal_loss
elif self.loss_type == "sigmoid":
loss = F.binary_cross_entropy_with_logits(input=logits, target=labels_one_hot, weight=weights)
elif self.loss_type == "softmax":
# loss = F.cross_entropy(input=logits, target=labels, weight=weights)
pred = logits.softmax(dim=1)
cb_loss = F.binary_cross_entropy(input=pred, target=labels_one_hot, weight=weights)
return cb_loss

View File

@@ -0,0 +1,48 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
def _assert_no_grad(variable):
assert not variable.requires_grad, \
"nn criterions don't compute the gradient w.r.t. targets - please " \
"mark these variables as volatile or not requiring gradients"
class _Loss(nn.Module):
def __init__(self, size_average=True):
super(_Loss, self).__init__()
self.size_average = size_average
class _WeightedLoss(_Loss):
def __init__(self, weight=None, size_average=True):
super(_WeightedLoss, self).__init__(size_average)
self.register_buffer('weight', weight)
class DClassifierForSource(_WeightedLoss):
def __init__(self, weight=None, size_average=True, ignore_index=-100, reduce=True, nClass=10):
super(DClassifierForSource, self).__init__(weight, size_average)
self.nClass = nClass
def forward(self, input):
# _assert_no_grad(target)
batch_size = input.size(0)
prob = F.softmax(input, dim=1)
# prob = F.sigmoid(input)
c = prob.data[:, :self.nClass].sum(1)
d = (prob.data[:, :self.nClass].sum(1) == 0).sum()
if (prob.data[:, :self.nClass].sum(1) == 0).sum() != 0: ########### in case of log(0)
soft_weight = torch.FloatTensor(batch_size).fill_(0)
soft_weight[prob[:, :self.nClass].sum(1).data.cpu() == 0] = 1e-6
soft_weight_var = Variable(soft_weight).cuda()
loss = -((prob[:, :self.nClass].sum(1) + soft_weight_var).log().mean())
else:
a = prob[:, :self.nClass].sum(1) # 求数组每一行的和
b = a.log()
c = b.mean()
loss = -(prob[:, :self.nClass].sum(1).log().mean())
return loss

View File

@@ -0,0 +1,44 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
def _assert_no_grad(variable):
assert not variable.requires_grad, \
"nn criterions don't compute the gradient w.r.t. targets - please " \
"mark these variables as volatile or not requiring gradients"
class _Loss(nn.Module):
def __init__(self, size_average=True):
super(_Loss, self).__init__()
self.size_average = size_average
class _WeightedLoss(_Loss):
def __init__(self, weight=None, size_average=True):
super(_WeightedLoss, self).__init__(size_average)
self.register_buffer('weight', weight)
class DClassifierForTarget(_WeightedLoss):
def __init__(self, weight=None, size_average=True, ignore_index=-100, reduce=True, nClass=10):
super(DClassifierForTarget, self).__init__(weight, size_average)
self.nClass = nClass
def forward(self, input):
# _assert_no_grad(target)
batch_size = input.size(0)
prob = F.softmax(input, dim=1)
# prob = F.sigmoid(input)
if (prob.data[:, self.nClass:].sum(1) == 0).sum() != 0: ########### in case of log(0)
soft_weight = torch.FloatTensor(batch_size).fill_(0)
soft_weight[prob[:, self.nClass:].sum(1).data.cpu() == 0] = 1e-6
soft_weight_var = Variable(soft_weight).cuda()
loss = -((prob[:, self.nClass:].sum(1) + soft_weight_var).log().mean())
else:
loss = -(prob[:, self.nClass:].sum(1).log().mean())
return loss

View File

@@ -0,0 +1,46 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
def _assert_no_grad(variable):
assert not variable.requires_grad, \
"nn criterions don't compute the gradient w.r.t. targets - please " \
"mark these variables as volatile or not requiring gradients"
class _Loss(nn.Module):
def __init__(self, size_average=True):
super(_Loss, self).__init__()
self.size_average = size_average
class _WeightedLoss(_Loss):
def __init__(self, weight=None, size_average=True):
super(_WeightedLoss, self).__init__(size_average)
self.register_buffer('weight', weight)
class EMLossForTarget(_WeightedLoss):
def __init__(self, weight=None, size_average=True, ignore_index=-100, reduce=True, nClass=10):
super(EMLossForTarget, self).__init__(weight, size_average)
self.nClass = nClass
def forward(self, input):
batch_size = input.size(0)
prob = F.softmax(input, dim=1)
# prob = F.sigmoid(input)
prob_source = prob[:, :self.nClass]
prob_target = prob[:, self.nClass:]
prob_sum = prob_target + prob_source
if (prob_sum.data.cpu() == 0).sum() != 0:
weight_sum = torch.FloatTensor(batch_size, self.nClass).fill_(0)
weight_sum[prob_sum.data.cpu() == 0] = 1e-6
weight_sum = Variable(weight_sum).cuda()
loss_sum = -(prob_sum + weight_sum).log().mul(prob_sum).sum(1).mean()
else:
loss_sum = -prob_sum.log().mul(prob_sum).sum(1).mean()
return loss_sum

View File

@@ -0,0 +1,12 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class SmoothCrossEntropy(nn.Module):
def __init__(self, epsilon: float = 0.):
super(SmoothCrossEntropy, self).__init__()
self.epsilon = float(epsilon)
def forward(self, logits: torch.Tensor, labels: torch.LongTensor) -> torch.Tensor:
target_probs = torch.full_like(logits, self.epsilon / (logits.shape[1] - 1))
target_probs.scatter_(1, labels.unsqueeze(1), 1 - self.epsilon)
return F.kl_div(torch.log_softmax(logits, 1), target_probs, reduction='none').sum(1)

0
models/__init__.py Normal file
View File

261
models/resnet.py Normal file
View File

@@ -0,0 +1,261 @@
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import torch
import ipdb
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet18(args, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if args.pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
# modify the structure of the model.
num_of_feature_map = model.fc.in_features
model.fc = nn.Linear(num_of_feature_map, args.num_classes)
model.fc.weight.data.normal_(0.0, 0.02)
model.fc.bias.data.normal_(0)
return model
def resnet34(args, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if args.pretrained:
print('Load ImageNet pre-trained resnet model')
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
# modify the structure of the model.
num_of_feature_map = model.fc.in_features
model.fc = nn.Linear(num_of_feature_map, args.num_classes)
return model
def resnet50(args, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if args.pretrained:
if args.pretrained_checkpoint: ################### use self-pretrained model
# modify the structure of the model.
num_of_feature_map = model.fc.in_features
model.fc = nn.Linear(num_of_feature_map, args.num_classes * 2)
init_dict = model.state_dict()
pretrained_dict_temp = torch.load(args.pretrained_checkpoint)['state_dict']
pretrained_dict = {k.replace('module.', ''): v for k, v in pretrained_dict_temp.items()}
temp = init_dict['fc.weight'].clone()
temp[:args.num_classes, :] = pretrained_dict['fc.weight'].clone()
pretrained_dict['fc.weight'] = temp.clone()
temp = init_dict['fc.bias'].clone()
temp[:args.num_classes] = pretrained_dict['fc.bias'].clone()
pretrained_dict['fc.bias'] = temp.clone()
model.load_state_dict(pretrained_dict)
else:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) ########## use imagenet pretrained model
# modify the structure of the model.
num_of_feature_map = model.fc.in_features
model.fc = nn.Linear(num_of_feature_map, args.num_classes * 2)
return model
def resnet101(args, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
if args.pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
# modify the structure of the model.
num_of_feature_map = model.fc.in_features
model.fc = nn.Linear(num_of_feature_map, args.num_classes)
model.fc.weight.data.normal_(0.0, 0.02)
model.fc.bias.data.normal_(0)
return model
def resnet152(args, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if args.pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
# modify the structure of the model.
num_of_feature_map = model.fc.in_features
model.fc = nn.Linear(num_of_feature_map, args.num_classes)
return model
def resnet(args, **kwargs): ################ Only support ResNet-50 in this simple code.
print("==> creating model '{}' ".format(args.arch))
if args.arch == 'resnet18':
return resnet18(args)
elif args.arch == 'resnet34':
return resnet34(args)
elif args.arch == 'resnet50':
return resnet50(args)
elif args.arch == 'resnet101':
return resnet101(args)
elif args.arch == 'resnet152':
return resnet152(args)
else:
raise ValueError('Unrecognized model architecture', args.arch)