This commit is contained in:
2024-05-21 19:41:56 +08:00
commit ca67205608
217 changed files with 201004 additions and 0 deletions

194
new_test.py Normal file
View File

@@ -0,0 +1,194 @@
import os
import time
from clip import clip
import torch.nn as nn
import numpy as np
import torch.optim
import random
from opts import opts # The options for the project
# from trainer import validate # For the validate (test) process
from models.DomainClassifierTarget import DClassifierForTarget
from models.DomainClassifierSource import DClassifierForSource
from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss
from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \
set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights, gpt_clip_classifier, \
calculate_zeroshot_weights_GPT,calculate_zero
from Adapter import Weight_Adapter
import logging
import torch.nn.functional as F
import yaml
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
import glob
def zeroshot_classifier(classname, templates, CLIP_Text):
with torch.no_grad():
classname = classname.replace('_', ' ')
str_prompts = [template.format(classname) for template in templates]
prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda()
features, eot_indices = CLIP_Text(prompts)
return features, eot_indices
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
_2, pred2 = output.topk(1, 1, True, True)
a = target.view(1, -1)
correct = pred.eq(target.view(1, -1).expand_as(pred))
# print(correct)
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class Feature_Extractor(nn.Module):
def __init__(self, n_input, n_output):
super().__init__(),
self.linear1 = nn.Linear(n_input, n_output)
self.relu = nn.ReLU()
def forward(self, x):
x = self.linear1(x.float())
x = self.relu(x)
return x
class Weight_Adapter(nn.Module):
def __init__(self, n_input, n_output):
super().__init__()
self.linear1 = nn.Linear(n_input, n_output)
def forward(self, x):
x = self.linear1(x.float())
return x
def all_classifier(classnames, templates, model):
with torch.no_grad():
zeroshot_weights = []
for classname in classnames:
classname = classname.replace('_', ' ')
texts = [template.format(classname) for template in templates] # format with class
texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字
class_embeddings = model.encode_text(texts) # embed with text encoder
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding /= class_embedding.norm()
zeroshot_weights.append(class_embedding)
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
return zeroshot_weights
def validate(classnames, templates,val_loader, model, args, zero_shots, criterion,
optimizer, scheduler, alpha, beta, gama):
global best_target_acc
Compu1_acc = AverageMeter()
losses = AverageMeter()
model.eval()
logit_scale = 4.60517
# logit_scale = math.exp(logit_scale)
# switch to evaluate mode
for i, (image, label, _) in enumerate(val_loader):
image = image.cuda()
label = label.cuda()
input_target = image.cuda()
target_target = label.cuda()
target_source = label.cuda()
input_target_clip = model.encode_image(input_target)
# 2
logits2 = 100.*input_target_clip.float() @ zero_shots.float()
# compu1:1-2+3:
compu1 = logits2
compu1_acc = accuracy(compu1, target_target, topk=(1, 5))
loss = criterion(compu1, target_target)
Compu1_acc.update(compu1_acc[0].item(), image.size(0))
losses.update(loss.item(), image.size(0))
print('loss:', loss.item())
print(i, '/', len(val_loader))
print('Compu1_acc:', Compu1_acc.val, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
print('Compu1_acc.avg', Compu1_acc.avg, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item(),
'losses.avg', losses.avg)
return Compu1_acc.avg, alpha.item(), beta.item(), gama.item()
def main():
args = opts()
seed = 2023
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
global best_prec1
model, preprocess = clip.load(args.name)
model.eval()
classnames, templates, loader, train_loader,_ = get_dataset_loader(args, preprocess)
loader=_
criterion = nn.CrossEntropyLoss().cuda()
alpha = nn.Parameter(torch.ones([]), requires_grad=True)
beta = nn.Parameter(torch.ones([]), requires_grad=True)# 91.35902633202728
gama = nn.Parameter(torch.ones([]), requires_grad=True)
#best_top1 93.46855981296748 best_a 1.0 best_b 6.64284086227417 best_c 0.8092490434646606
zero_weights = all_classifier(classnames, templates, model)
optimizer = torch.optim.AdamW(
[{'params': beta, 'lr': 0.1}, {'params': gama, 'lr': 0.1}],
eps=1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 40 * len(loader))
validate(classnames, templates,loader, model, args, zero_weights,
criterion, optimizer, scheduler, alpha, beta, gama)
#
#
#
#
if __name__ == '__main__':
main()