This commit is contained in:
2024-05-21 19:41:56 +08:00
commit ca67205608
217 changed files with 201004 additions and 0 deletions

59
res.py Normal file
View File

@@ -0,0 +1,59 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class ModifiedBasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels):
super(ModifiedBasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
# 确保shortcut路径的维度匹配如果不匹配则通过1x1卷积进行调整
self.shortcut = nn.Sequential()
if in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x) # 添加shortcut连接
out = F.relu(out)
return out
class ModifiedResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ModifiedResNet, self).__init__()
self.in_channels = 512 # 假设起始通道数为512
self.conv1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(512)
self.layer1 = self._make_layer(block, 512, layers[0])
self.layer2 = self._make_layer(block, 512, layers[1])
self.layer3 = self._make_layer(block, 512, layers[2])
self.layer4 = self._make_layer(block, 512, layers[3])
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, out_channels, blocks):
layers = []
for _ in range(blocks):
layers.append(block(self.in_channels, out_channels))
self.in_channels = out_channels * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
# 假设你有一个特定的方式来处理最终的特征图以得到256x512维的输出
# 例如可以使用自适应池化层调整尺寸或者直接reshape根据实际需求
out = F.adaptive_avg_pool2d(out, (x.size(0), x.size(1)))
out = out.view(out.size(0), -1)
out = self.linear(out)
return out