405 lines
16 KiB
Python
405 lines
16 KiB
Python
import json
|
||
import os
|
||
import random
|
||
import shutil
|
||
import time
|
||
from clip import clip
|
||
import numpy as np
|
||
import torch.backends.cudnn as cudnn
|
||
import torch.nn as nn
|
||
import torch.optim
|
||
from data.prepare_data_shot2 import generate_dataloader # Prepare the data and dataloader
|
||
from opts import opts # The options for the project
|
||
from trainer_1_17 import train # For the training process
|
||
from trainer_1_17 import validate # For the validate (test) process
|
||
from models.DomainClassifierTarget import DClassifierForTarget
|
||
from models.DomainClassifierSource import DClassifierForSource
|
||
from engine import partial_model
|
||
from clip.model import ModifiedResNet, VisionTransformer
|
||
from datasets import build_dataset
|
||
from datasets.utils import build_data_loader
|
||
import torchvision.transforms as transforms
|
||
import math
|
||
import shutil
|
||
|
||
|
||
best_prec1 = 0
|
||
|
||
class Weight_Adapter(nn.Module):
|
||
def __init__(self, n_input, n_output,adapter_weights):
|
||
super().__init__()
|
||
self.linear1 = nn.Linear(n_input, n_output, bias=False)
|
||
self.linear1.weight.data = adapter_weights # Initialize linear layer weights
|
||
|
||
def forward(self, x):
|
||
x = self.linear1(x.float())
|
||
return x
|
||
class Adapter(nn.Module):
|
||
def __init__(self, n_input,n_output):
|
||
super().__init__()
|
||
self.residual_ratio = 0.2
|
||
self.linear1 = nn.Linear(n_input, n_output, bias=False)
|
||
# self.linear1.weight.data = adapter_weights # Initialize linear layer weights
|
||
self.relu=nn.ReLU()
|
||
|
||
def forward(self, x):
|
||
a=x
|
||
x = self.linear1(x.float())
|
||
x=self.relu(x)
|
||
# x = self.residual_ratio * x + (1 - self.residual_ratio) * a
|
||
|
||
return x
|
||
def zeroshot_classifier(classname, templates, CLIP_Text):
|
||
with torch.no_grad():
|
||
classname = classname.replace('_', ' ')
|
||
str_prompts = [template.format(classname) for template in templates]
|
||
prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda()
|
||
features, eot_indices = CLIP_Text(prompts)
|
||
return features, eot_indices
|
||
|
||
class AverageMeter(object):
|
||
"""Computes and stores the average and current value"""
|
||
|
||
def __init__(self):
|
||
self.reset()
|
||
|
||
def reset(self):
|
||
self.val = 0
|
||
self.avg = 0
|
||
self.sum = 0
|
||
self.count = 0
|
||
|
||
def update(self, val, n=1):
|
||
self.val = val
|
||
self.sum += val * n
|
||
self.count += n
|
||
self.avg = self.sum / self.count
|
||
|
||
|
||
def accuracy(output, target, topk=(1,)):
|
||
"""Computes the precision@k for the specified values of k"""
|
||
maxk = max(topk)
|
||
batch_size = target.size(0)
|
||
_, pred = output.topk(maxk, 1, True, True)
|
||
pred = pred.t()
|
||
_2, pred2 = output.topk(1, 1, True, True)
|
||
a = target.view(1, -1)
|
||
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
||
# print(correct)
|
||
res = []
|
||
for k in topk:
|
||
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
|
||
res.append(correct_k.mul_(100.0 / batch_size))
|
||
return res
|
||
|
||
|
||
def all_classifier(classnames, templates, model):
|
||
with torch.no_grad():
|
||
zeroshot_weights = []
|
||
for classname in classnames:
|
||
classname = classname.replace('_', ' ')
|
||
texts = [template.format(classname) for template in templates] # format with class
|
||
texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字
|
||
class_embeddings = model.encode_text(texts) # embed with text encoder
|
||
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
|
||
class_embedding = class_embeddings.mean(dim=0)
|
||
class_embedding /= class_embedding.norm()
|
||
zeroshot_weights.append(class_embedding)
|
||
|
||
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
|
||
return zeroshot_weights
|
||
|
||
def validate_train(classnames, templates,val_loader, model, args, zero_shots, criterion,
|
||
optimizer, scheduler, alpha, beta, gama, CLIP_Text, CLIP_Image,Image_Encoder,Text_Encoder,adapter):
|
||
global best_target_acc
|
||
Compu1_acc = AverageMeter()
|
||
losses = AverageMeter()
|
||
CLIP_Text.eval()
|
||
CLIP_Image.eval()
|
||
Image_Encoder.eval()
|
||
Text_Encoder.eval()
|
||
adapter.eval()
|
||
logit_scale = 4.60517
|
||
logit_scale = math.exp(logit_scale)
|
||
# switch to evaluate mode
|
||
|
||
for i, (image, label) in enumerate(val_loader):
|
||
image = image.cuda()
|
||
label = label.cuda()
|
||
zeroshot_weights = []
|
||
for j in range(len(label)):
|
||
features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text)
|
||
with torch.no_grad():
|
||
class_embeddings = Text_Encoder(features, eot_indices)
|
||
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
|
||
class_embedding = class_embeddings.mean(dim=0)
|
||
class_embedding = class_embedding / class_embedding.norm()
|
||
class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True)
|
||
zeroshot_weights.append(class_embedding)
|
||
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
|
||
input_source = zeroshot_weights
|
||
input_source = input_source.T
|
||
input_target = image.cuda()
|
||
target_target = label.cuda()
|
||
target_source = label.cuda()
|
||
|
||
input_target_clip = model.encode_image(input_target)
|
||
# clip图片编码器
|
||
with torch.no_grad():
|
||
input_target_temp = CLIP_Image(input_target)
|
||
input_target_add = Image_Encoder(input_target_temp)
|
||
output_source = adapter(input_source) * logit_scale
|
||
output_target = adapter(input_target_add) * logit_scale
|
||
|
||
# 3
|
||
loss_source = criterion(output_source[:, :len(classnames)], target_source)
|
||
loss_target = criterion(output_target[:, len(classnames):], target_target)
|
||
|
||
# measure accuracy and record loss
|
||
prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5))
|
||
prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5))
|
||
|
||
|
||
# 2
|
||
logits2 =100.* input_target_clip.float() @ zero_shots.float()
|
||
|
||
# 3
|
||
logits3 = output_target[:, len(classnames):]
|
||
|
||
# compu1:1-2+3:
|
||
compu1 = beta*logits2 + gama * logits3
|
||
|
||
compu1_acc = accuracy(compu1, target_target, topk=(1, 5))
|
||
loss = criterion(compu1, target_target)
|
||
Compu1_acc.update(compu1_acc[0].item(), image.size(0))
|
||
losses.update(loss.item(), image.size(0))
|
||
print('loss:', loss.item())
|
||
print(i, '/', len(val_loader))
|
||
print('Compu1_acc:', Compu1_acc.val, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item())
|
||
|
||
optimizer.zero_grad()
|
||
loss.backward()
|
||
optimizer.step()
|
||
scheduler.step()
|
||
|
||
print('Compu1_acc.avg', Compu1_acc.avg, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item(),
|
||
'losses.avg', losses.avg)
|
||
return Compu1_acc.avg, alpha.item(), beta.item(), gama.item()
|
||
|
||
|
||
def main():
|
||
|
||
seed = 2023
|
||
random.seed(seed)
|
||
os.environ['PYTHONHASHSEED'] = str(seed)
|
||
np.random.seed(seed)
|
||
torch.manual_seed(seed)
|
||
torch.cuda.manual_seed(seed)
|
||
torch.cuda.manual_seed_all(seed)
|
||
|
||
|
||
global args, best_prec1
|
||
current_epoch = 0
|
||
args = opts()
|
||
clip.available_models()
|
||
model, preprocess = clip.load(args.name)
|
||
# model = model.cuda()
|
||
model.float()
|
||
|
||
if os.path.exists(args.filename_dir):
|
||
print('exist')
|
||
else:
|
||
os.makedirs(args.filename_dir)
|
||
|
||
filename=args.filename_dir+args.dataset_name+'.txt'
|
||
if os.path.exists(filename):
|
||
print(filename + " exist!")
|
||
else:
|
||
print("create " + filename)
|
||
f = open(filename, "w")
|
||
f.close()
|
||
|
||
epx_dir=args.savedir+args.dataset_name+'_epx/'+str(args.shot)+'shot'+'/'
|
||
if os.path.exists(epx_dir):
|
||
print('epx_dir exist')
|
||
else:
|
||
os.makedirs(epx_dir)
|
||
|
||
|
||
dataset = build_dataset(args.dataset_name, args.dataset_dir, args.shot)
|
||
classnames=dataset.classnames
|
||
templates=dataset.template
|
||
|
||
|
||
# loader = build_data_loader(data_source=dataset.val, batch_size=64, is_train=False, tfm=preprocess,
|
||
# shuffle=False)
|
||
loader = build_data_loader(data_source=dataset.test, batch_size=64, is_train=False, tfm=preprocess,
|
||
shuffle=False)
|
||
|
||
train_tranform = transforms.Compose([
|
||
transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC),
|
||
transforms.RandomHorizontalFlip(p=0.5),
|
||
transforms.ToTensor(),
|
||
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
||
])
|
||
#
|
||
# train_loader_cache = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform,
|
||
# is_train=True, shuffle=False)
|
||
train_loader_shuffle = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, is_train=True,
|
||
shuffle=True)
|
||
|
||
|
||
criterion = nn.CrossEntropyLoss().cuda()
|
||
|
||
# if not os.path.isdir(args.log):
|
||
# os.makedirs(args.log)
|
||
# log = open(os.path.join(args.log, 'log.txt'), 'a')
|
||
# state = {k: v for k, v in args._get_kwargs()}
|
||
# log.write(json.dumps(state) + '\n')
|
||
# log.close()
|
||
#
|
||
# cudnn.benchmark = True # Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异
|
||
#
|
||
# log = open(os.path.join(args.log, 'log.txt'), 'a')
|
||
# log.write('\n-------------------------------------------\n')
|
||
# log.write(time.asctime(time.localtime(time.time())))
|
||
# log.write('\n-------------------------------------------')
|
||
# log.close()
|
||
|
||
# process the data and prepare the dataloaders.
|
||
# train_loader_shuffle, loader = generate_dataloader(args, preprocess)
|
||
|
||
|
||
#拆分CLIP图像编码器
|
||
if args.name =="ViT-B/16":
|
||
CLIP_Text,Text_Encoder=partial_model.get_text(model,text_layer_idx=0)
|
||
assert type(model.visual) == VisionTransformer
|
||
CLIP_Image,Image_Encoder=partial_model.get_image_vit(model.visual, image_layer_idx=0)
|
||
elif args.name =="ViT-B/32":
|
||
CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0)
|
||
assert type(model.visual) == VisionTransformer
|
||
CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0)
|
||
elif args.name == "RN50":
|
||
CLIP_Text,Text_Encoder =partial_model.get_text(model,text_layer_idx=0)
|
||
assert type(model.visual) == ModifiedResNet
|
||
CLIP_Image,Image_Encoder=partial_model.get_image_resnet(model.visual, image_layer_idx=1)
|
||
elif args.name == "RN101":
|
||
CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0)
|
||
assert type(model.visual) == ModifiedResNet
|
||
CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0)
|
||
elif args.name == "RN50x16":
|
||
CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0)
|
||
assert type(model.visual) == ModifiedResNet
|
||
CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0)
|
||
|
||
# 1000类标签经过clip
|
||
model=model.cuda()
|
||
|
||
zero_weights = all_classifier(classnames, templates, model)
|
||
CLIP_Text,Text_Encoder,CLIP_Image,Image_Encoder=CLIP_Text.cuda(),Text_Encoder.cuda(),CLIP_Image.cuda(),Image_Encoder.cuda()
|
||
|
||
|
||
|
||
|
||
weights_path = None
|
||
best_epoch=0
|
||
best_init_acc=0
|
||
criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda()
|
||
criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda()
|
||
|
||
text_weights=zero_weights
|
||
|
||
adapter_weights=torch.cat([text_weights,text_weights],dim=1).T
|
||
adapter = Weight_Adapter(1024, 2 * len(classnames),adapter_weights).cuda()
|
||
|
||
|
||
|
||
ADAM_BETAS = (0.9, 0.999)
|
||
if args.shot>=18:
|
||
optimizer = torch.optim.AdamW([{'params': adapter.parameters(), 'lr': 0.001},
|
||
{'params': Image_Encoder.parameters(), 'lr':0.00001},
|
||
{'params': Text_Encoder.parameters(), 'lr': 0.00001}],
|
||
eps=1e-5)
|
||
else:
|
||
# optimizer = torch.optim.AdamW([{'params': adapter.parameters(), 'lr': 0.0001},
|
||
# {'params': Image_Encoder.parameters(), 'lr':0.00001},
|
||
# {'params': Text_Encoder.parameters(), 'lr': 0.00001}],
|
||
# eps=1e-5)
|
||
# optimizer = torch.optim.AdamW([{'params': adapter.parameters()},
|
||
# {'params': Image_Encoder.parameters()},
|
||
# {'params': Text_Encoder.parameters()}],
|
||
# eps=1e-5,lr=0.0001,weight_decay=0.0001)
|
||
|
||
##caltech101
|
||
# optimizer = torch.optim.AdamW(
|
||
# [
|
||
# {'params': adapter.parameters(), 'lr': 0.0001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS},
|
||
# {'params': Image_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS},
|
||
# {'params': Text_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}]
|
||
# , eps=1e-4
|
||
# )
|
||
|
||
optimizer = torch.optim.AdamW(
|
||
[
|
||
{'params': adapter.parameters(), 'lr': 0.0001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS},
|
||
{'params': Image_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS},
|
||
{'params': Text_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}]
|
||
, eps=1e-4
|
||
)
|
||
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader_shuffle))
|
||
source_train_loader_batch = enumerate(train_loader_shuffle)
|
||
|
||
dir=args.savedir+args.dataset_name+'_epx/'+str(args.shot)+'shot'+'/'
|
||
torch.save(CLIP_Text, dir + '/CLIP_Text.pth')
|
||
torch.save(CLIP_Image, dir + '/CLIP_Image.pth')
|
||
|
||
while (current_epoch < args.epochs):
|
||
source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates,
|
||
train_loader_shuffle,
|
||
source_train_loader_batch,
|
||
model,
|
||
adapter,
|
||
criterion_classifier_source,
|
||
criterion_classifier_target,
|
||
optimizer,
|
||
current_epoch,
|
||
args, scheduler, criterion, CLIP_Text,Text_Encoder,CLIP_Image,Image_Encoder)
|
||
# evaluate on the val data
|
||
if new_epoch_flag:
|
||
if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0:
|
||
if current_epoch >=args.valepoch:
|
||
prec1 = validate(classnames, templates,loader, model, adapter, current_epoch, args, zero_weights, criterion,
|
||
CLIP_Text,Text_Encoder,CLIP_Image,Image_Encoder)
|
||
# record the best prec1 and save checkpoint
|
||
is_best = prec1 > best_prec1
|
||
if prec1 > args.valacc:
|
||
save_dir = dir+'/epoch_' + str(current_epoch) + '_' + str(
|
||
prec1)
|
||
if not os.path.isdir(save_dir):
|
||
os.mkdir(save_dir)
|
||
torch.save(adapter, save_dir + '/_adapter_extractor.pth')
|
||
torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth')
|
||
torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth')
|
||
best_prec1 = max(prec1, best_prec1)
|
||
if is_best:
|
||
weights_path=save_dir
|
||
best_init_acc=best_prec1
|
||
best_epoch=current_epoch
|
||
# log = open(os.path.join(args.log, 'log.txt'), 'a')
|
||
# log.write('Best acc: %3f' % (best_prec1))
|
||
# log.close()
|
||
filename=args.filename_dir+args.dataset_name+'.txt'
|
||
strr=str(args.shot)+'shot'+' '+'best_epoch'+' '+str(best_epoch)+' '+'best_init_acc'+' '+str(best_init_acc)
|
||
with open(filename, 'a') as f:
|
||
f.write(strr+ '\n')
|
||
f.close()
|
||
# log = open(os.path.join(args.log, 'log.txt'), 'a')
|
||
# log.write('\n-------------------------------------------\n')
|
||
# log.write(time.asctime(time.localtime(time.time())))
|
||
# log.write('\n-------------------------------------------\n')
|
||
# log.close()
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|