Files
clip-symnets/new_trainer.py
2024-05-21 19:41:56 +08:00

489 lines
21 KiB
Python

import random
import time
import numpy as np
import torch
import os
import math
import clip
import ipdb
import torch.nn.functional as F
import torch.nn as nn
from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss
def zeroshot_classifier(classname, templates, CLIP_Text):
with torch.no_grad():
classname = classname.replace('_', ' ')
str_prompts = [template.format(classname) for template in templates]
prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda()
features, eot_indices = CLIP_Text(prompts)
return features, eot_indices
def warm_train(classnames, templates, source_train_loader, source_train_loader_batch, model,
adapter, criterion_classifier_source, criterion_classifier_target, optimizer,
epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,res_adapter):
random.seed(1)
batch_time = AverageMeter()
data_time = AverageMeter()
losses_classifier = AverageMeter()
losses_G = AverageMeter()
losses_T = AverageMeter()
top1_source = AverageMeter()
top1_target = AverageMeter()
CLIP_Text.eval()
CLIP_Image.eval()
Text_Encoder.eval()
Image_Encoder.eval()
logit_scale = 4.60517
logit_scale = math.exp(logit_scale)
model.eval()
adapter.eval()
res_adapter.train()
new_epoch_flag = False
end = time.time()
concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda()
try:
(image, label, _) = source_train_loader_batch.__next__()[1]
except StopIteration:
epoch = epoch + 1
new_epoch_flag = True
source_train_loader_batch = enumerate(source_train_loader)
(image, label, _) = source_train_loader_batch.__next__()[1]
target_target = label.cuda()
# 自监督标签
label_self_supervised = label.cuda()
indices = torch.randperm(len(label))
target_source = label[indices].cuda()
# target_source = label.cuda()
input_target = image.cuda()
zeroshot_weights = []
for i in range(len(target_source)):
features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text)
class_embeddings = Text_Encoder(features, eot_indices)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding = class_embedding / class_embedding.norm()
class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True)
zeroshot_weights.append(class_embedding)
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
input_source = zeroshot_weights.T
self_zeroshot_weights = []
for i in range(len(label_self_supervised)):
features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text)
class_embeddings = Text_Encoder(features, eot_indices)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding = class_embedding / class_embedding.norm()
self_zeroshot_weights.append(class_embedding)
self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda()
self_input_source = self_zeroshot_weights.T
data_time.update(time.time() - end)
target_target_temp = target_target + len(classnames)
# label_self_supervised=target_target_temp.cuda()
target_source_temp = target_source + len(classnames)
target_target_temp = target_target_temp.cuda()
# clip图片编码器
with torch.no_grad():
input_target_temp = CLIP_Image(input_target)
input_target_add = Image_Encoder(input_target_temp)
# 文本直接输入全连接层
# input_source=res_adapter(input_source)
output_source = adapter(input_source) * logit_scale
# 输入编码图片
input_target_add=res_adapter(input_target_add)
output_target = adapter(input_target_add) * logit_scale
# 自监督文本输入全连接层
# self_input_source=res_adapter(self_input_source)
self_output_source = adapter(self_input_source)
self_output_source = self_output_source # [:,:len(classnames)]+self_output_source[:,len(classnames):]
self_output_source = F.normalize(self_output_source)
# 自监督图像特征
self_output_target = output_target / logit_scale
self_output_target = self_output_target # [:,len(classnames):]+self_output_target[:,:len(classnames)]
self_output_target = F.normalize(self_output_target)
# # 构造自监督标签0-255
self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long)
logits_per_image = logit_scale * self_output_target @ self_output_source.T
logits_per_text = logit_scale * self_output_source @ self_output_target.T
loss_self_supervised = (
F.cross_entropy(logits_per_image, self_supervised_labels) +
F.cross_entropy(logits_per_text, self_supervised_labels)
) / 2
# 有监督分类的交叉熵损失
loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source)
loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target)
# 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。
loss_domain_st_Cst_part1 = criterion(output_source, target_source)
loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp)
# 类级别混淆
loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source,
target_source_temp)
# 域级别混淆
# loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source(
# output_target)
lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1
self_lam =10-10*lam
loss_confusion_target = concatenatedCELoss(output_target)
# loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2
# loss_G = loss_category_st_G + lam * loss_confusion_target
loss_classifier=0
loss_G=0
loss_T = loss_self_supervised
prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5))
prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5))
# losses_classifier.update(loss_classifier.item(), input_source.size(0))
# losses_G.update(loss_G.item(), input_source.size(0))
losses_T.update(loss_T.item(), input_source.size(0))
top1_source.update(prec1_source[0], input_source.size(0))
top1_target.update(prec1_target[0], input_source.size(0))
optimizer.zero_grad()
# loss_classifier.backward(retain_graph=True)
# optimizer.step()
#
# optimizer.zero_grad()
# loss_G.backward()
loss_T.backward()
optimizer.step()
scheduler.step()
batch_time.update(time.time() - end)
if (epoch + 1) % args.print_freq == 0 or epoch == 0:
print('Warn_Train: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t'
'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t'
'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t'
'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t'
'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format(
epoch, args.epochs, batch_time=batch_time,
data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source,
top1T=top1_target))
if new_epoch_flag:
log = open(os.path.join(args.log, 'log.txt'), 'a')
log.write("\n")
log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % (
epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg))
log.close()
return source_train_loader_batch, epoch, new_epoch_flag
def train(classnames, templates, source_train_loader, source_train_loader_batch, model,
adapter, criterion_classifier_source, criterion_classifier_target, optimizer,
epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,res_adapter):
random.seed(1)
batch_time = AverageMeter()
data_time = AverageMeter()
losses_classifier = AverageMeter()
losses_G = AverageMeter()
losses_T = AverageMeter()
top1_source = AverageMeter()
top1_target = AverageMeter()
CLIP_Text.eval()
CLIP_Image.eval()
Text_Encoder.train()
Image_Encoder.train()
logit_scale = 4.60517
logit_scale = math.exp(logit_scale)
model.eval()
adapter.train()
res_adapter.train()
new_epoch_flag = False
end = time.time()
concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda()
try:
(image, label, _) = source_train_loader_batch.__next__()[1]
except StopIteration:
epoch = epoch + 1
new_epoch_flag = True
source_train_loader_batch = enumerate(source_train_loader)
(image, label, _) = source_train_loader_batch.__next__()[1]
target_target = label.cuda()
# 自监督标签
label_self_supervised = label.cuda()
indices = torch.randperm(len(label))
target_source = label[indices].cuda()
# target_source = label.cuda()
input_target = image.cuda()
zeroshot_weights = []
for i in range(len(target_source)):
features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text)
class_embeddings = Text_Encoder(features, eot_indices)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding = class_embedding / class_embedding.norm()
class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True)
zeroshot_weights.append(class_embedding)
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
input_source = zeroshot_weights.T
self_zeroshot_weights = []
for i in range(len(label_self_supervised)):
features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text)
class_embeddings = Text_Encoder(features, eot_indices)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding = class_embedding / class_embedding.norm()
self_zeroshot_weights.append(class_embedding)
self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda()
self_input_source = self_zeroshot_weights.T
data_time.update(time.time() - end)
target_target_temp = target_target + len(classnames)
# label_self_supervised=target_target_temp.cuda()
target_source_temp = target_source + len(classnames)
target_target_temp = target_target_temp.cuda()
# clip图片编码器
with torch.no_grad():
input_target_temp = CLIP_Image(input_target)
input_target_add = Image_Encoder(input_target_temp)
# 文本直接输入全连接层
# input_source = res_adapter(input_source)
output_source = adapter(input_source) * logit_scale
# 输入编码图片
input_target_add = res_adapter(input_target_add)
output_target = adapter(input_target_add) * logit_scale
# 自监督文本输入全连接层
# self_input_source = res_adapter(self_input_source)
self_output_source = adapter(self_input_source)
self_output_source = self_output_source # [:,:len(classnames)]+self_output_source[:,len(classnames):]
self_output_source = F.normalize(self_output_source)
# 自监督图像特征
self_output_target = output_target / logit_scale
self_output_target = self_output_target # [:,len(classnames):]+self_output_target[:,:len(classnames)]
self_output_target = F.normalize(self_output_target)
# # 构造自监督标签0-255
self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long)
logits_per_image = logit_scale * self_output_target @ self_output_source.T
logits_per_text = logit_scale * self_output_source @ self_output_target.T
loss_self_supervised = (
F.cross_entropy(logits_per_image, self_supervised_labels) +
F.cross_entropy(logits_per_text, self_supervised_labels)
) / 2
self_lam = 1 /3
# 有监督分类的交叉熵损失
loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source)
loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target)
# 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。
loss_domain_st_Cst_part1 = criterion(output_source, target_source)
loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp)
# 类级别混淆
loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source,
target_source_temp)
# 域级别混淆
# loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source(
# output_target)
lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1
loss_confusion_target = concatenatedCELoss(output_target)
loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2
loss_G = loss_category_st_G + lam * loss_confusion_target
loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised
prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5))
prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5))
losses_classifier.update(loss_classifier.item(), input_source.size(0))
losses_G.update(loss_G.item(), input_source.size(0))
losses_T.update(loss_T.item(), input_source.size(0))
top1_source.update(prec1_source[0], input_source.size(0))
top1_target.update(prec1_target[0], input_source.size(0))
optimizer.zero_grad()
# loss_classifier.backward(retain_graph=True)
# optimizer.step()
#
# optimizer.zero_grad()
# loss_G.backward()
loss_T.backward()
optimizer.step()
scheduler.step()
batch_time.update(time.time() - end)
if (epoch + 1) % args.print_freq == 0 or epoch == 0:
print('Train: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t'
'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t'
'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t'
'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t'
'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format(
epoch, args.epochs, batch_time=batch_time,
data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source,
top1T=top1_target))
if new_epoch_flag:
log = open(os.path.join(args.log, 'log.txt'), 'a')
log.write("\n")
log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % (
epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg))
log.close()
return source_train_loader_batch, epoch, new_epoch_flag
best_target_acc = 0
best_epoch = 0
def validate(classnames, templates, val_loader, model, adapter, epoch, args, zero_shots, criterion, CLIP_Text,
Text_Encoder, CLIP_Image,
Image_Encoder,res_adapter):
global best_target_acc
global best_epoch
batch_time = AverageMeter()
losses_source = AverageMeter()
losses_target = AverageMeter()
top1_source = AverageMeter()
top1_target = AverageMeter()
zero_acc_I_acc = AverageMeter()
clip_acc_aver = AverageMeter()
Compu4_acc = AverageMeter()
# switch to evaluate mode
CLIP_Text.eval()
CLIP_Image.eval()
Text_Encoder.eval()
Image_Encoder.eval()
model.eval()
adapter.eval()
end = time.time()
logit_scale = 4.60517
logit_scale = math.exp(logit_scale)
for i, (image, label, _) in enumerate(val_loader):
image = image.cuda()
label = label.cuda()
zeroshot_weights = []
for j in range(len(label)):
features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text)
with torch.no_grad():
class_embeddings = Text_Encoder(features, eot_indices)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding = class_embedding / class_embedding.norm()
class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True)
zeroshot_weights.append(class_embedding)
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
input_source = zeroshot_weights
input_source = input_source.T
input_target = image.cuda()
target_target = label.cuda()
target_source = label.cuda()
# clip图片编码器
with torch.no_grad():
input_target_temp = CLIP_Image(input_target)
input_target_add = Image_Encoder(input_target_temp)
# output_source = adapter(input_source) * logit_scale
input_target_add=res_adapter(input_target_add)
output_target = adapter(input_target_add) * logit_scale
output_source = output_target
# 3
loss_source = criterion(output_source[:, :len(classnames)], target_target)
loss_target = criterion(output_target[:, len(classnames):], target_target)
# measure accuracy and record loss
prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5))
prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5))
losses_source.update(loss_source.item(), image.size(0))
losses_target.update(loss_target.item(), image.size(0))
top1_source.update(prec1_source[0], image.size(0))
top1_target.update(prec1_target[0], image.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'LS {lossS.val:.4f} ({lossS.avg:.4f})\t'
'LT {lossT.val:.4f} ({lossT.avg:.4f})\t'
'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t'
'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format(
epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target,
top1S=top1_source, top1T=top1_target))
print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}'
.format(top1S=top1_source, top1T=top1_target))
if max(top1_target.avg, top1_source.avg) > best_target_acc:
best_target_acc = max(top1_target.avg, top1_source.avg)
best_epoch = epoch
print('best_epoch', best_epoch, ' * Current_best_target@T:', best_target_acc.item())
log = open(os.path.join(args.log, 'log.txt'), 'a')
log.write("\n")
log.write(" Test:epoch: %d, LS: %4f, LT: %4f, Top1S: %3f, Top1T: %3f" % \
(epoch, losses_source.avg, losses_target.avg, top1_source.avg, top1_target.avg))
log.close()
return best_target_acc.item()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
_2, pred2 = output.topk(1, 1, True, True)
a = target.view(1, -1)
correct = pred.eq(target.view(1, -1).expand_as(pred))
# print(correct)
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res