2 Commits

Author SHA1 Message Date
0ba13ffbbd Attn fuse 2026-01-31 23:48:05 +08:00
miunangel
1ba2d4359b doc: Add icons 2025-10-11 18:22:05 +08:00
7 changed files with 76 additions and 41 deletions

View File

@@ -31,3 +31,4 @@ MODEL:
TRAINER:
COOP:
CTX_INIT: True
ATTENTION_REG_WEIGHT: 0.01

View File

@@ -3,36 +3,26 @@
TRAINER=$1
KG_WEIGHT=$2
MP_WEIGHT=$3
ATTN_REG_WEIGHT=$4
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} ucf101 ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} ucf101 ${KG_WEIGHT} ${MP_WEIGHT}
# Define datasets array
datasets=(
"ucf101"
"eurosat"
"oxford_pets"
"food101"
"oxford_flowers"
"dtd"
"caltech101"
"fgvc_aircraft"
"stanford_cars"
"sun397"
"imagenet"
)
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} eurosat ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} eurosat ${KG_WEIGHT} ${MP_WEIGHT}
# Loop through datasets
for dataset in "${datasets[@]}"; do
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} ${dataset} ${KG_WEIGHT} ${MP_WEIGHT} ${ATTN_REG_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} ${dataset} ${KG_WEIGHT} ${MP_WEIGHT} ${ATTN_REG_WEIGHT}
done
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} oxford_pets ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} oxford_pets ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} food101 ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} food101 ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} oxford_flowers ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} oxford_flowers ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} dtd ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} dtd ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} caltech101 ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} caltech101 ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} fgvc_aircraft ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} fgvc_aircraft ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} stanford_cars ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} stanford_cars ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} sun397 ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} sun397 ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train.sh ${TRAINER} imagenet ${KG_WEIGHT} ${MP_WEIGHT}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test.sh ${TRAINER} imagenet ${KG_WEIGHT} ${MP_WEIGHT}

View File

@@ -7,6 +7,7 @@ DATASET=$2
N_PROMPTS=4
KG_WEIGHT=$3
MP_WEIGHT=$4
ATTN_REG_WEIGHT=$5
#CFG=rn50_ep100 # config file
CFG=vit_b16_ep100_ctxv1
CTP=end # class token position (end or middle)
@@ -19,7 +20,7 @@ SUB=new
for SEED in 1 2 3
do
COMMON_DIR=${DATASET}/shots_${SHOTS}_${KG_WEIGHT}/${TRAINER}/${CFG}/seed${SEED}
COMMON_DIR=${DATASET}/shots_${SHOTS}_${KG_WEIGHT}_${MP_WEIGHT}_${ATTN_REG_WEIGH}/${TRAINER}/${CFG}/seed${SEED}
MODEL_DIR=output/base2new/train_base/${COMMON_DIR}
DIR=output/base2new/test_${SUB}/${COMMON_DIR}

View File

@@ -6,6 +6,7 @@ TRAINER=$1
DATASET=$2
KG_WEIGHT=$3
MP_WEIGHT=$4
ATTN_REG_WEIGHT=$5
N_PROMPTS=4
#CFG=rn50_ep100 # config file\
CFG=vit_b16_ep100_ctxv1
@@ -16,7 +17,7 @@ CSC=False # class-specific context (False or True)
for SEED in 1 2 3
do
DIR=output/base2new/train_base/${DATASET}/shots_${SHOTS}_${KG_WEIGHT}/${TRAINER}/${CFG}/seed${SEED}
DIR=output/base2new/train_base/${DATASET}/shots_${SHOTS}_${KG_WEIGHT}_${MP_WEIGHT}_${ATTN_REG_WEIGH}/${TRAINER}/${CFG}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Skip this job"
else
@@ -35,6 +36,7 @@ do
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES base \
TRAINER.COOP.N_PROMPTS ${N_PROMPTS} \
TRAINER.COOP.DIV_WEIGHT ${MP_WEIGHT}
TRAINER.COOP.DIV_WEIGHT ${MP_WEIGHT} \
TRAINER.COOP.ATTENTION_REG_WEIGHT ${ATTN_REG_WEIGHT}
fi
done

View File

@@ -105,6 +105,7 @@ def extend_cfg(cfg):
cfg.TRAINER.COCOOP.PREC = "fp16" # fp16, fp32, amp
cfg.TRAINER.COOP.DIV_WEIGHT = 0.1
cfg.TRAINER.COOP.N_PROMPTS = 3
cfg.TRAINER.COOP.ATTENTION_REG_WEIGHT = 0.01
cfg.DATASET.SUBSAMPLE_CLASSES = "all" # all, base or new
"""

View File

@@ -223,6 +223,28 @@ class Adapter(nn.Module):
x = self.fc(x)
return x
class AttentionBasedIntegrator(nn.Module):
def __init__(self, img_dim=512, n_prompts=4, dtype=None):
super().__init__()
self.attention = nn.Sequential(
nn.Linear(img_dim, img_dim // 4),
nn.Tanh(),
nn.Linear(img_dim // 4, n_prompts)
)
self.dtype = dtype
if dtype is not None:
self.attention = self.attention.to(dtype)
def forward(self, image_features, all_logits):
attn_scores = self.attention(image_features)
attn_weights = F.softmax(attn_scores, dim=-1)
weighted_logits = torch.einsum('bp,pbc->bc', attn_weights, all_logits)
return weighted_logits, attn_weights
class CustomCLIP(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
@@ -236,6 +258,12 @@ class CustomCLIP(nn.Module):
self.dtype = clip_model.dtype
self.meta_net = self.prompt_learner.meta_net
self.adapter = Adapter(512, 4).to(clip_model.dtype)
self.prompt_integrator = AttentionBasedIntegrator(
img_dim=clip_model.visual.output_dim,
n_prompts=self.n_prompts,
dtype=clip_model.dtype
)
def compute_diversity_loss(self, text_features):
if self.n_prompts == 1:
@@ -283,10 +311,12 @@ class CustomCLIP(nn.Module):
text_features_i = text_features_i / text_features_i.norm(dim=-1, keepdim=True)
logits_i = logit_scale * image_features @ text_features_i.t()
all_logits.append(logits_i)
all_logits = torch.stack(all_logits)
logits, attn_weights = self.prompt_integrator(image_features, all_logits)
logits = torch.stack(all_logits).mean(dim=0)
return logits, score, diversity_loss
return logits, score, diversity_loss, attn_weights
@TRAINER_REGISTRY.register()
@@ -310,10 +340,11 @@ class MSGCoOp(TrainerX):
self.model = CustomCLIP(cfg, classnames, clip_model)
self.w = cfg.TRAINER.COOP.W
self.diversity_weight = cfg.TRAINER.COOP.DIV_WEIGHT
self.attn_reg_weight = cfg.TRAINER.COOP.ATTENTION_REG_WEIGHT if hasattr(cfg.TRAINER.COOP, 'ATTENTION_REG_WEIGHT') else 0.01
print("Turning off gradients in both the image and the text encoder")
for name, param in self.model.named_parameters():
if "ctx" not in name:
if "ctx" not in name and "prompt_integrator" not in name:
param.requires_grad_(False)
else:
print(name)
@@ -322,8 +353,10 @@ class MSGCoOp(TrainerX):
load_pretrained_weights(self.model.prompt_learner, cfg.MODEL.INIT_WEIGHTS)
self.model.to(self.device)
# NOTE: only give prompt_learner to the optimizer
self.optim = build_optimizer(self.model.prompt_learner, cfg.OPTIM)
# NOTE: give prompt_learner and prompt_integrator to the optimizer
trainable_params = list(self.model.prompt_learner.parameters()) + list(self.model.prompt_integrator.parameters())
self.optim = build_optimizer([{'params': trainable_params}], cfg.OPTIM)
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
self.register_model("prompt_learner", self.model.prompt_learner, self.optim, self.sched)
@@ -352,8 +385,12 @@ class MSGCoOp(TrainerX):
self.scaler.step(self.optim)
self.scaler.update()
else:
output, score, diversity_loss = self.model(image)
loss = F.cross_entropy(output, label)+self.w*score + diversity_loss * self.diversity_weight
output, score, diversity_loss, attn_weights = self.model(image)
# Add attention regularization to encourage balanced prompt usage
attn_reg = -(attn_weights * torch.log(attn_weights + 1e-8)).mean()
loss = F.cross_entropy(output, label) + self.w * score + diversity_loss * self.diversity_weight + self.attn_reg_weight * attn_reg
self.model_backward_and_update(loss)
loss_summary = {

View File

@@ -1,5 +1,8 @@
# MSGCoOp: Visual-Language Prompt Tuning with Knowledge-guided Context Optimization
[![Paper](https://img.shields.io/badge/arXiv-Paper-brightgreen.svg)](https://arxiv.org/abs/2507.21786)
[![Code](https://img.shields.io/badge/Code-GitHub-blueviolet.svg)](https://github.com/Rain-Bus/MSGCoOp)
## Overview of MSGCoOp
We introduce **Multi-prompt Semantic-Guided Context Optimization (MSGCoOp)**, a novel framework that advances CLIP-based prompt tuning for few-shot learning. MSGCoOp addresses the challenge of generalizing to novel classes efficiently, without heavy architectural modifications or expensive computation.