Files
clip-symnets/datasets/oxford_flowers.py
2024-05-21 19:41:56 +08:00

67 lines
2.4 KiB
Python

import os
import random
from scipy.io import loadmat
from collections import defaultdict
from .oxford_pets import OxfordPets
from .utils import Datum, DatasetBase, read_json
template = ['a photo of a {}, a type of flower.']
class OxfordFlowers(DatasetBase):
dataset_dir = 'oxford_flowers'
def __init__(self, root, num_shots):
self.dataset_dir = os.path.join(root, self.dataset_dir)
self.image_dir = os.path.join(self.dataset_dir, 'jpg')
self.label_file = os.path.join(self.dataset_dir, 'imagelabels.mat')
self.lab2cname_file = os.path.join(self.dataset_dir, 'cat_to_name.json')
self.split_path = os.path.join(self.dataset_dir, 'split_zhou_OxfordFlowers.json')
self.template = template
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir)
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
super().__init__(train_x=train, val=val, test=test)
def read_data(self):
tracker = defaultdict(list)
label_file = loadmat(self.label_file)['labels'][0]
for i, label in enumerate(label_file):
imname = f'image_{str(i + 1).zfill(5)}.jpg'
impath = os.path.join(self.image_dir, imname)
label = int(label)
tracker[label].append(impath)
print('Splitting data into 50% train, 20% val, and 30% test')
def _collate(ims, y, c):
items = []
for im in ims:
item = Datum(
impath=im,
label=y-1, # convert to 0-based label
classname=c
)
items.append(item)
return items
lab2cname = read_json(self.lab2cname_file)
train, val, test = [], [], []
for label, impaths in tracker.items():
random.shuffle(impaths)
n_total = len(impaths)
n_train = round(n_total * 0.5)
n_val = round(n_total * 0.2)
n_test = n_total - n_train - n_val
assert n_train > 0 and n_val > 0 and n_test > 0
cname = lab2cname[str(label)]
train.extend(_collate(impaths[:n_train], label, cname))
val.extend(_collate(impaths[n_train:n_train+n_val], label, cname))
test.extend(_collate(impaths[n_train+n_val:], label, cname))
return train, val, test